Innovative Suspended Quartz Structure Offers High Stability Reference Clocks Ullas Kumar

Topics

High stability crystal types

QAS crystal

Improvements

- Stability
- Vibration

Solutions for Out-of-the-box 24-hour holdover

QAS vs Classic QAS Crystals

Holder Crystal - crystal in a protective housing with electrical terminals

- Mechanical protection for the quartz crystal
- Stable environment isolation from thermal and mechanical stresses
- Electrical connectivity through leads

Classical QHS electrodes

(Quartz High-Stability)

Quartz Auto Suspendu (QAS) design

Translates to Self-suspended Quartz

QHS

QAS

rakon

Comparison of performances

rako

The HC-43 packaged crystal is placed inside an OCXO of typical Stratum 3E+ performance

- 1ppb temperature stability
- 0.3ppb/day ageing

Note: Stratum 3E is 10ppb pk-pk and 1ppb/day ageing

Performance comparison with

- Temperature stability
- Phase Noise
- Ageing
- Re-trace
- Acceleration sensitivity
- Holdover

Performances Comparison QHS and QAS

A 25x22 mm - sized OCXO device is similar

The frequency versus temperature

Parameter	Condition	QAS Crystal	QHS Crystal
Frequency Vs Temperature (DF/F)	-40°C to 85°C	< 1E-9	< 1E-9

The phase noise

Parameter	Offset	QAS	QHS
Phase noise	1 Hz	-90	-90
(dBc/Hz)	10 Hz	-120	-120
	100 Hz	-140	-140
	1 kHz	-150	-150
	10 kHz	-155	-155
	100 kHz	-160	-160
	1 MHz	-165	-165

Acceleration sensitivity Comparison

Based on the 2g tip over testing method

rakon

- Calculation of Sgy, Sgx and Sgz in DF/F /g
- The total sensitivity, Sgq:
 - Sgq= $\sqrt{Sgx^2 + Sgy^2 + Sgz^2}$.

rakon

Acceleration sensitivity measurements

7

Acceleration sensitivity measurements

The acceleration sensitivity is 3 times better than the traditional crystals to <1ppb/g

Acceleration values on various environments

Environment	Max Acceleration (g)	Dominant Frequency Range
Data Center	~0.05 g	5–100 Hz
Office Server Room	~0.05–0.1 g	5–100 Hz
Tower Base Station Outdoor Room	~0.05–0.1 g	<10 Hz
Telecom Pole (Mast) Top	~0.2–0.3 g	1–10 Hz
Near Railway Line	~0.15 g	5–30 Hz
Onboard Train (Acceleration Phase)	~1–3 g peak	5–60 Hz
Onboard Train	~0.5 g (rms)	5–50 Hz
Onboard Aircraft (Take-off/Climb)	~0.5–1.5	10–300 Hz
Onboard Aircraft (Cruise)	~0.2 g	20–500 Hz
Onboard Missile / Launch Vehicle	8–20 g (rms/peak)	20–2000 Hz

10MHz QAS Retrace after 24H off

Relative frequency difference between

- the frequency after 24H off and just before the switch off

The retrace is 10 times better than the traditional crystals

QAS retrace is 10x better

Ageing

Systematic frequency change over time

rakon

Projection of the frequency ageing

Minimally 10 po

1 point per d •

Until target agei

Per day, mon •

	Enregistrer Pièce précédente Pièce suivante Imprimer Echelle DF/F Quitter	
0 points per day ageing achieved month and years	Pièce Code article 332782 Fréquence 10 000 000 Date Fréquence ^ Date code 2024/25 Fermeture 1 001 27-07-24 02:41 10 000 003.487 28-07-24 02:40 10 000 003.488 N* de série 0634 Nb mesures 31 29-07-24 02:42 10 000 003.488 29-07-24 02:42 10 000 003.488 Branchement 28-06-2024 N* voie 5947 Specification : 4.500E-09 par mois Change Modélisation automatique ✓ Specification : 4.500E-09 par mois Change Eliminer les points aberrants (0) ✓ Specification : 4.500E-09 par mois Change Nb points min 10 Ecart max : 5 % 2.72E-08 / 10 années => 4.68E-11/mois Bésuitate : Ecart max : 5 ✓ 10 années => 4.68E-11/mois	Measured Ageing per day, Predicted per month, per year & 10/20
Use of Aging model & calculated Coefficients	Présuitais : Ecart = 3.04 % N Ecart = 3.04 % 31 points utilisés dF/F = ArLog(B·t+1)+C dF/F = ArLog(B·t+1)+C A = 5.774E-09 B = 4.423E-01 C = -2.072E-09 U C = -2.072E-09 U C = -2.072E-09 U C = -2.072E-09	Blue line – Prediction curve
Red line – curve fitting w.r.t Aging Model on the Measured data	2 3	

rakon

10MHz QAS vs QHS Ageing

The ageing is 5x better with QAS

10MHz Daily Ageing

The daily ageing time to reach 2e-10 is five times shorter for the QAS. The total number of devices that exceed a certain ageing threshold is higher

Holdover performance

QHS

QAS

rakon **Holdover performance (10MHZ) – Distribution across batches** 100% 100% 90% 90% 80% 80% 70% 70% 60% 60% Yield 50% 50% 40% 40% 30% 30% 20%

20%

10%

0%

1.5

0

4.5

3

7.5

X-1.5 < TE (μs) <X

9

10.5

12

13.5

15

6

The 24-hour (1.5uS) yield for the holdover is over 70% with QAS for a certain ageing time

15

Yield

10%

0%

0

1.5

3

4.5

7.5

X-1.5 < TE (us) < X

6

9

10.5

12

13.5

Holdover on 10MHz 25x22 OCXO

The holdover over 12h for 1.5us is with a yield of 100% for the QAS on certain ageing period

rakon

18

Summary

- QAS structure is less affected by mounting stress compared to QHS.
 Overall improvement with out-of-the-box holdover
- QAS has
 - 3× lower acceleration sensitivity (<1E-9/g)
 - 10× better retrace (<5e-10) is than traditional
 - 5× smaller frequency deviation (1e-8) than traditional
 - 5× faster to reach a daily ageing rate of 2e-10/day than traditional
 - daily ageing (\pm 3.5e-11) meets the 5G holdover requirement (1.5 μ s over 24h) in 80% of cases.
- No ageing compensation needed to meet 5G holdover.

Thank you!

rakon

Contributions from:

Vincent Candelier

Advanced R&D manager/Senior Design Engineer

Nalini C V

Manager/Design

Thank you

