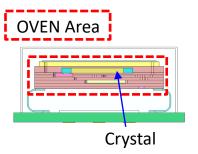
New OCXO Contributes to Lower Power Consumption

Kensaku Isohata (R&D Manager : Seiko Epson)
Hiroyuki Shimada (Timing Engineering Manager : Epson America)
Madura Fontaine (Product Marketing Manager : Epson America)

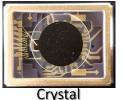
The Need for "Low Power" consumption in networks

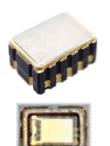
- The expansion of 5G / 6G / AI will increase the demand for High-Stability oscillators.
- The Data traffic and the power consumption of networks will be increased.
- New OCXO contribute to society as point of "Low Power" consumption and "High-Stability".


Data Amount

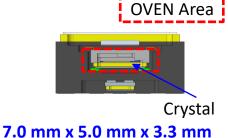
Consumption

New Concept OCXO "Low Power" & "High-Stability"


Conventional OCXO



14.4 mm x 9.5 mm x 6.2 mm



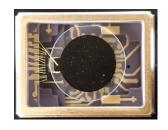
Crystal

al ____

	Conventional	New Concept	Mark
Power	0.43 W (25 °C)	0.2 W (25 °C)	-56%
Freq. vs Temp	$\pm 10 \times 10^{-9}$ (-40 °C to +85 °C) Typ.	$\pm 1 \times 10^{-9}$ (-40 °C to +105 °C) Typ.	-90% Wide Range
Holdover	1.5 μs / 8 h	1.5 μs / 8 h	Same
Freq. range	10 MHz to 40 MHz	1 MHz to 170 MHz	Higher Freq.
Crystal	6mmΦ SC-Cut	Small Rectangle SC-Cut	-90%
Product Size	14.4 mm x 9.5 mm x 6.2 mm	7.0 mm x 5.0 mm x 3.3 mm	-85%

Challenges for "Low Power" & "High-Stability" Low Power High-Stability

- () Miniaturization of the OVEN Area
 - Miniaturization of the SC-cut Crystal
- II) Thermal insulated structure
 - Reduction of Parts


- I) High-Precision OVEN control
 - Thermal insulated structure
 - Not affected by airflow
- Use High Q SC-cut Crystal
 - SC-cut is more accurate than AT-cut

- ✓ Miniaturization of the SC-cut Crystal
- ✓ Thermal insulated structure
- ✓ High-Precision OVEN control

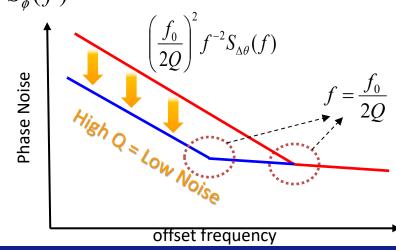
Miniaturization of the SC-cut Crystal

Important characteristic of a crystal is the Q value

- ✓ Q value is related to Phase Noise
- ✓ Q value needs to be high

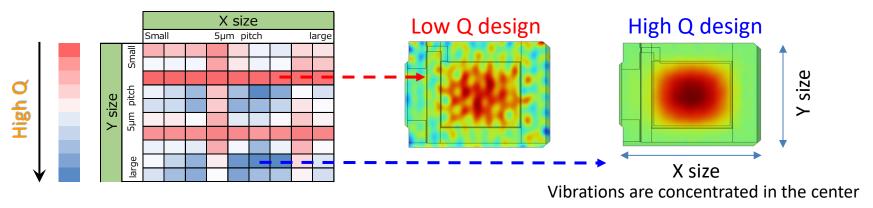
☐ Conventional SC-cut (6mmΦ)

- Circular shape : Reduce the effect of reflection
- High-Q Value : Convex shape and 3rd O/T oscillation



- ☐ New OCXO's SC-cut Challenges
- Miniaturization :
 To achieve low power consumption
- Phase noise : Deterioration due to miniaturization

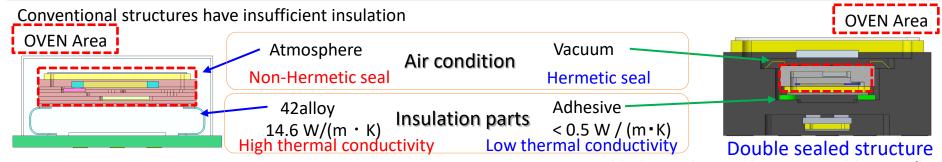
Phase Noise (Leeson's model)

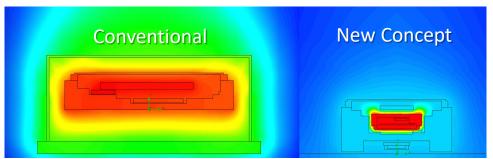

$$S_{\phi}(f) = \left\{ \left(\frac{f_0}{2Q} \right)^2 f^{-2} + 1 \right\} S_{\Delta\theta}(f)$$

Miniaturization of the SC-cut Crystal

Achieved a High Q value, equivalent to conventional OCXO, with a small SC cut.

Q value simulation using the finite element method(FEM)


Using simulation, we achieved the same Q value as Conventional OCXO


		Conventional	New Concept	Mark
Crystal Size		6ттФ	Small Rectangle	-90%
Q value	AVG.	296,845 (40MHz)	293,743 (30MHz)	Same

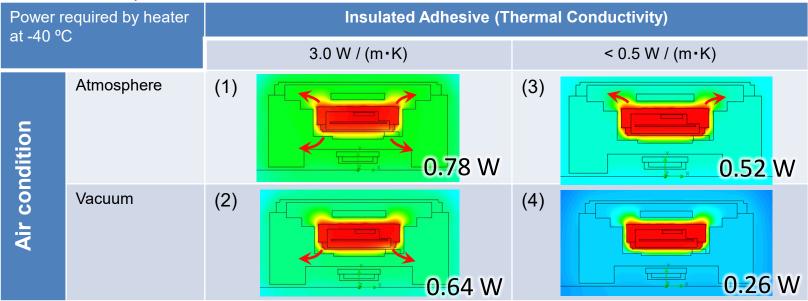
Thermal Insulated structure

Achieved low power consumption through highly insulated structure design

- Efficient oven control through hermetic structure around the oven and use of low-insulation materials
- Double-sealed structure minimizes the impact of outside air-condition

The heat of the oven is confined to the minimum necessary area.

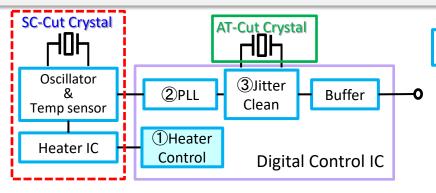
Double-layered PKG is less susceptible to airflow



Thermal Insulated structure

The higher the insulation around the oven, the lower the power consumption

Heat Transfer Analysis Simulation

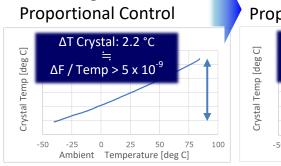


- (1) Heat dissipation from the adhesive and the top of the Inner PKG
- (2) Heat dissipation from the adhesive
- (3) Heat dissipation from the top of the Inner PKG
- (4) Almost all Heat can be trapped in the Inner PKG→ Low Power consumption

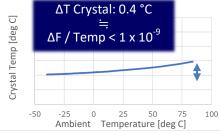
High-Precision OVEN control

Features of the circuit side in improving characteristics

1) The oven control is digital PI control, which reduces the Crystal temperature error and improves the temperature characteristics

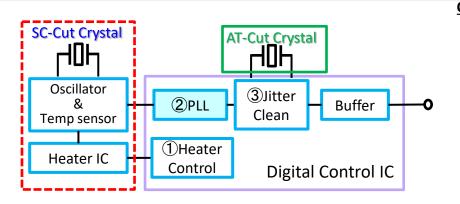

In-house IC : Digitally control the oven Integrate PLL circuit

☐ Challenge


*Conventional analog proportional control could not provide detailed temperature control, and the temperature error of the crystal occurred, and the temperature characteristics were about $\pm 5 \times 10^{-9}$ to $\pm 10 \times 10^{-9}$

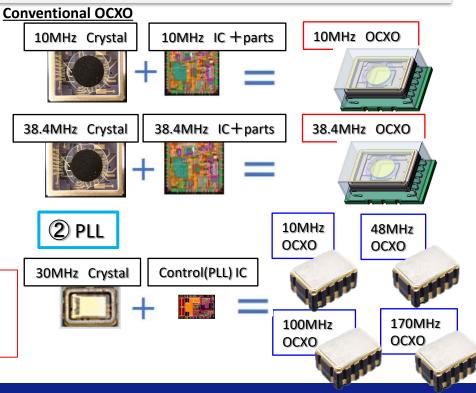
Analog circuit

Digital Control IC Proportional-Integral Control



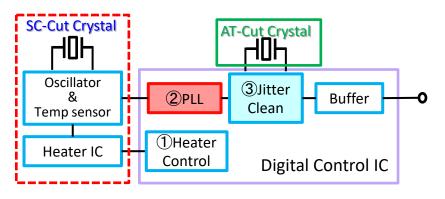
Small crystal temperature change against ambient temperature, excellent frequency temperature characteristics are achieved

Achieving Higher Frequencies

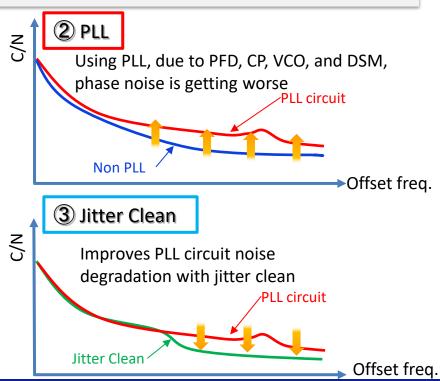

Features of the circuit side in improving characteristics

2) Built-in PLL circuit enables operation up to a maximum frequency of 170 MHz

In-house IC : Digitally control the oven Integrate PLL circuit

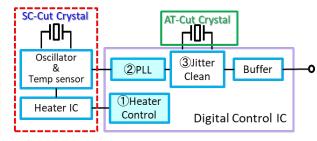

- ☐ Challenge
- In the past, as a result of prioritizing high accuracy, dedicated crystals and dedicated ICs were individually designed for each frequency
- Supports multiple frequencies

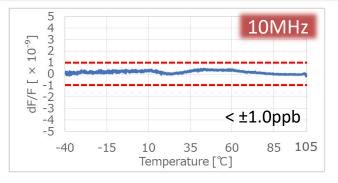
Improving Phase Noise

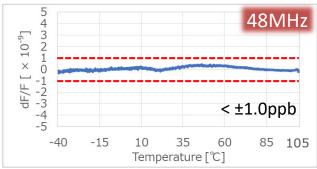

Features of the circuit side in improving characteristics

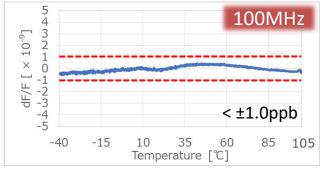
3) Improve floor noise that degradation with PLL by using jitter cleaner

In-house IC : Digitally control the oven Integrate PLL circuit

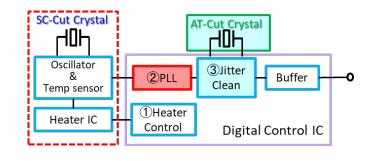

- ☐ Challenge
- Nearby carrier frequency noise can be reduced by using a High Q crystal
- Using PLL, degrades the floor noise of phase noise.



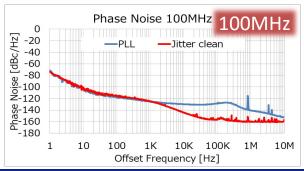

Results of Evaluation (under development)

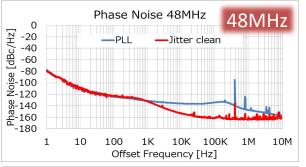

Static Temperature Characteristics

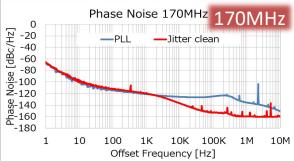
- ✓ High-Precision Oven control achieved ΔF _temp $\pm 1 \times 10^{-9}$
- ✓ Changing the frequency in the PLL settings does not change
 the temperature characteristics

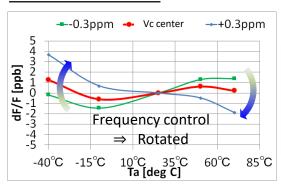


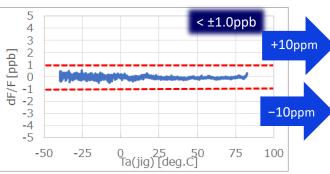

Phase Noise with Jitter Clean


- ✓ Jitter Clean reduces floor noise
- ✓ Achieved -160dBc/Hz regardless of frequency

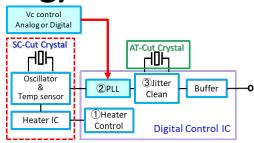

The Phase Noise level worse as the frequency increases.

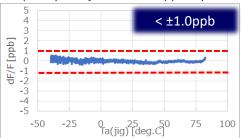

Using the Jitter cleaner improves floor noise to around -160dBc/Hz.

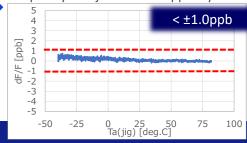



Effect of Digital Frequency control (fine-tuning)

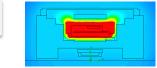
- ✓ Voltage control (Vc) (Frequency Variable): Even if Vc is adjusted, the temperature characteristic does not rotate because of the digital control inside the IC.
 - ☐ Digital frequency control in the PLL :
 - •There is no frequency effect by analog circuits,
 - Frequency can be adjusted while maintaining temperature characteristics.


Conventional OCXO

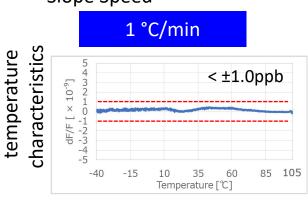

New OCXO

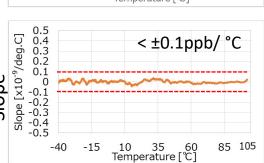

Temperature characteristics

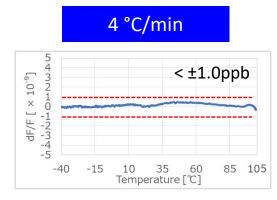
Frequency is adjusted to +10ppm by Vc

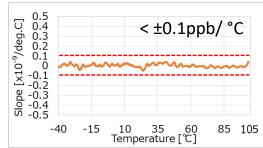


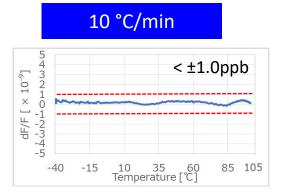
Frequency is adjusted to +10ppm by Vc

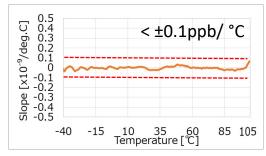



Dynamic Temperature Characteristics


✓ Same temperature characteristics even if the slope speed is changed

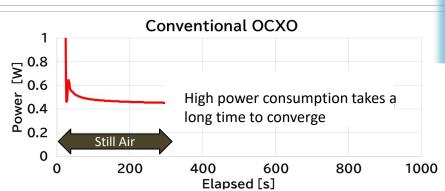



Slope Speed Thermal Insulated structure



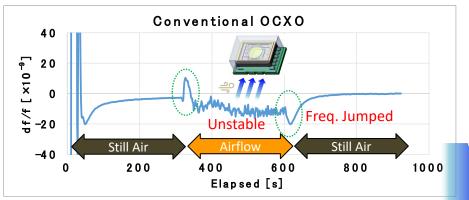
temperature

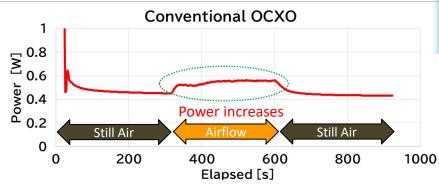

Frequency


Frequency

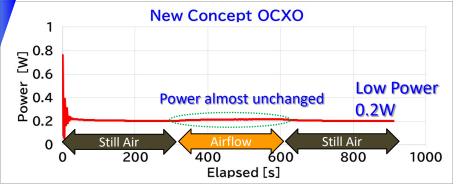
Start up time (Frequency Stabilization Time)

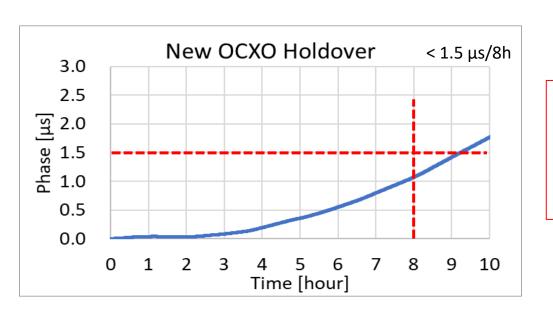
- ✓ Low power consumption enables fast frequency stabilization time
- √ Warm-up time < 30 sec typ.
 </p>





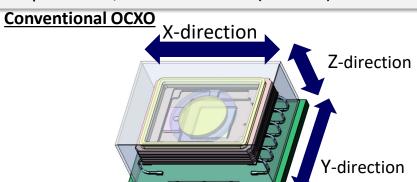
Airflow Performance

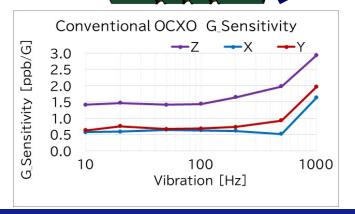

✓ Improves Airflow performance & Achieves low power consumption



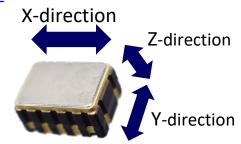
Holdover Characteristics

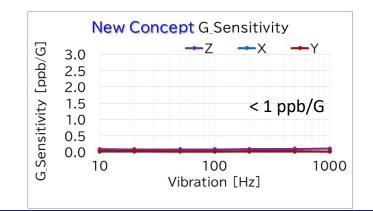
✓ Achieved 1.5 μs/8h Hold over characteristics, equivalent to conventional OCXO





- Measurement condition:
- 25 °C constant
- Transition to Holdover after 10 days after startup
- High-Q


G-sensitivity


✓ Improved G-sensitivity in all directions, because crystal size became small In particular, the Z-direction (vertical) has been greatly improved

Summary

✓ We achieved Low Power consumption OCXO through Miniaturization of the OVEN Area and Thermal insulated structure

-- Power : 0.2 W

-- Startup time : 30 second

✓ We achieved High-Stability OCXO with performance equal to or better than conventional type through High-Precision OVEN control and SC-cut Crystal, PLL circuit

-- Freq. vs Temp : $< \pm 1 \times 10^{-9}$ Typ. (-40 ° C to +105 ° C)

-- Freq. range : 1 MHz to 170 MHz

-- Airflow : Improved

-- Hold Over : $< 1.5 \mu s / 8 \text{ hours}$

-- G-sensitivity : < 1 ppb/G

EPSON