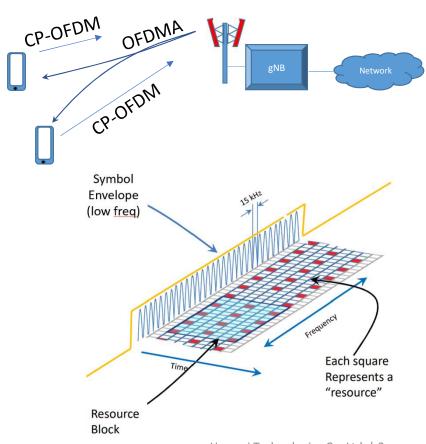


Purpose and focus

- Planning for 6G, also known as IMT-2030, is underway in standardization forums, with detailed standards development to begin within 18 months with the target of deployments in 2030
- New functionality can be expected, but will this require to changes the way we treat synchronization and what scope?
 - Network sync
 - Radio/equipment
- Recall that wireless sync requirements are already stringent
 - time-sync from the network
 - native 50ppb holdover in base-stations
- This presentation focuses on potential sync aspects only, given the nature of this conference


Recall why accurate timing needed in wireless

OFDMA/OFDM physical layer

- High user bandwidths, with low symbol rate, tolerant to multipath
- Supports connection of multiple terminals
- Performance impacted: inter-carrier interference (ICI) and inter-symbol interference (ISI)
- Use of pilot-based clock recovery allows managing of ICI, while use of cyclical prefix manages ISI
- Terminal mobility still requires coordination (timing advance)
- Maintaining spectrum limits requires frequency

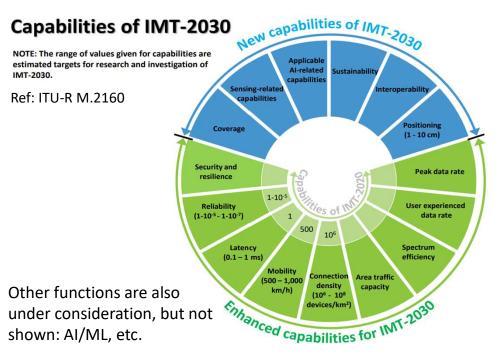
Timing is provided over backhaul

- Time and frequency to support both FDD and TDD
- may include a fronthaul network
- Goal is to maintain 50 ppb over the air interface with controlled time-offsets

WSTS 2025

Huawei Technologies Co. Ltd. | 3

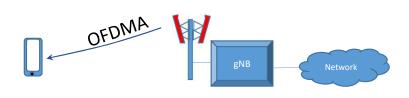
6G objectives build upon previous technology

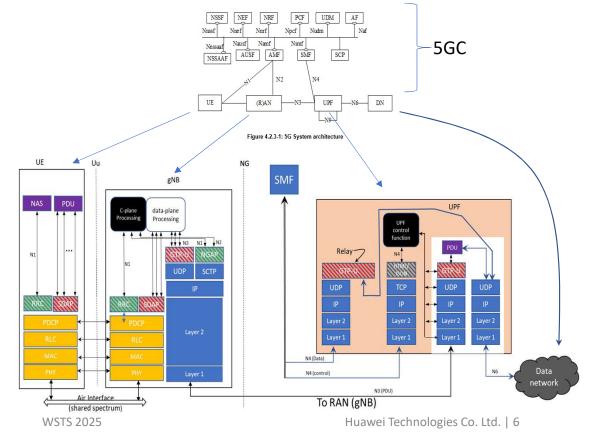

Main guidance currently in ITU-R:

- ITU-R M.2160: Framework and overall objectives of the future development of IMT for 2030 and beyond
- "High reliability and low latency noted to support time-synchronized operations (Ref: M.2160)"
- Report M.2516, Future technology trends of terrestrial International Mobile Telecommunications systems towards 2030 and beyond

Detailed capabilities to be developed in 3GPP

	5G	6G
User experienced data rate	100 Mbit/s	300,500Mbit/s
Spectrum efficiency	3x(over LTE)	1.5-3x over 5G
Mobility	500 km/h	1000 km/h
Latency	1ms	0.1 ms
Connection density	10 ⁶ devices/km ²	10 ⁸ devices/km ²
Network energy efficiency	100x	-
Area traffic capacity	10 Mbit/s/m	30, 50 Mbit/s/m
Peak data rate	20 Gbit/s	50, 100, 200 Gbit/s


New capabilities of 6G/IMT-2030


High reliability and low latency noted to support timesynchronized operations (Ref: M.2160)

- New capabilities for 6G are defined (from M.2160):
 - Coverage
 - coverage is defined as the cell edge distance of a single cell through link budget analysis.
 - Sensing related capabilities
 - refer to the ability to provide functionalities in the radio interface including range/velocity/angle estimation, object detection, localization, imaging, mapping, etc. These capabilities could be measured in terms of accuracy, resolution, detection rate, false alarm rate, etc.
 - · Applicable Al-related capabilities
 - functionalities include distributed data processing, distributed learning, Al computing, Al model execution and Al model inference, etc.
 - Sustainability
 - Energy efficiency
 - Interoperability
 - Interoperability refers to the radio interface being based on member-inclusivity and transparency, so as to enable functionality(ies) between different entities of the system.
 - Positioning
 - Positioning is the ability to calculate the approximate position of connected devices. Positioning accuracy is defined as the difference between the calculated horizontal/vertical position and the actual horizontal/vertical position of a device

Sync in wireless: potentially complex interactions

- Protocol stack description may aid understanding impacts of sync.
 - Timing distribution (PTP or SyncE)
 - Supporting functions in control may be required to support some functions (e.g. ISAC or positioning)
- Logical interfaces N1, N2 etc connect mix of control/data
 - Note, N1 connection is shown from UE to AMF, but relayed via gNB requiring extra processing.

How new capabilities are impacted?

Main areas considered:

Sensing-related capabilities, positioning (treated similarly)

Al-related capabilities

Interoperability (potential NTN sync issues)

New capabilities and sync

lues given simated and investi
Sensing-related capabilities

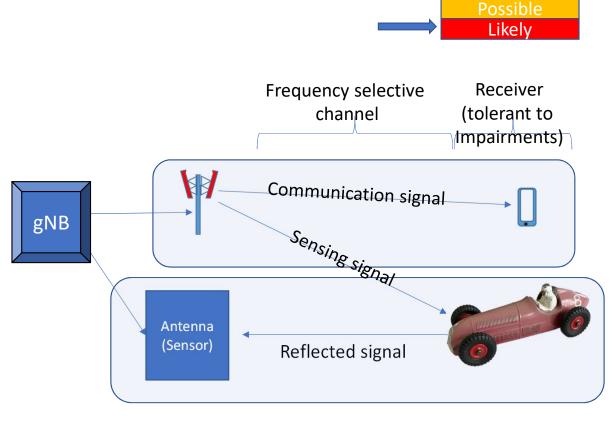
Sensing-related capabilities

Coverage

Coverage

Positioning (1 - 10 cm)

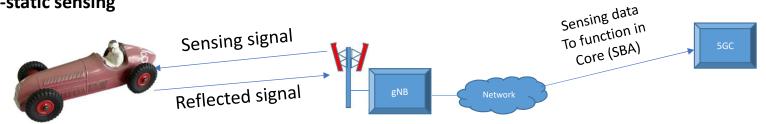
Security and Peak data rate


What are the sync impacts? (None, possible, likely)

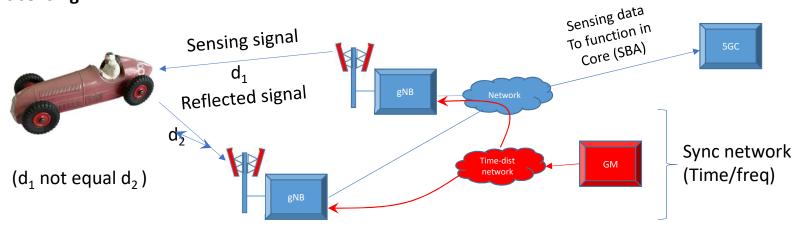
- Coverage
 - Function of the base-station (Sync by design), unlikely to require changes to external (network) sync
- Sensing-related capabilities
 - Sensing is a measurement system and therefore could be impacted
- Al-related capabilities
 - Sync could improve/optimize
- Sustainability
 - No impact on sync
- Interoperability
 - TN/NTN could have some sync impact (PNT)
- Positioning
 - Highly likely to be impacted, given target (1cm-10cm) and existing capabilities (in G.8271)

Sensing related capabilities (ISAC)


- Use RF signals from base station to sense surroundings
- Radar-like, early work based on WIFI
- Sense objects/environment
- Sub-meter accuracy
- Utilize algorithms such as MUSIC, SLAM
- Potential to use channel state information

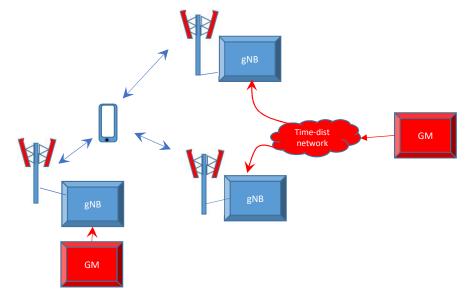

Impact on sync?

None expected


ISAC configurations

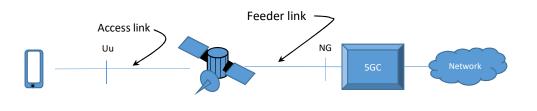
Mono-static sensing

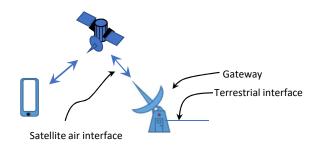
Bi-static sensing


Positioning

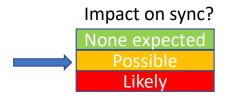
- What is it?
- There has long been a need to allow determination of user location for safety issues (911)
 - Initially mandated use of GPS in handsets
- Related to ISAC, since same system clock
- Methods exist to estimate location without GNSS such as time distance of arrival (TDOA)
 - Multiple base-stations may be involved
 - Accuracy objectives for 6G are very ambitious (1cm to 10 cm)
 - Current capabilities are in the order of 10's of metres
 - Different methods rely on exchange of information between nodes, similar to ISAC, processing differs from the way synchronization has been assessed previously
 - Studies in 3GPP have typically shown sub-metre possible. Sync understood that accuracy is impacted, but so far appears to be constrained to base-station performance, not network
 - High accuracy option
 - Something to watch, given link to emergency services

Example methods:


Time of Arrival (TOA)
Time Difference of Arrival (TDOA)
Angle of arrival (AoA)
Angle of Departure (AoD)
(UL/DL and combinations)



Non-terrestrial networks



- Non-terrestrial (satellite) networks are part of 5G
 - Generally a "bent-pipe"
 - LEO satellites provided by feeder link with control plane connection to core
 - UE gets location data from GPS
- For 6G, possible operation without GPS
 - What changes to timing over backhaul to support?

Al related issues

- AI/ML is now being considered:
 - 6G to support Al
 - Al to support 6G (e.g. process positioning information)
- Large amounts of data may need to be moved (models, training etc.)
 - No changes needed from sync to support this from the infrastructure perspective
- But, network optimization may benefit from data-centre sync to meet performance goals or to build upon sustainability and energy efficiency.

Summary: potential sync impact of 6G

- Do we need to improve sync?
 - Exact need for greater/different synchronization is still TBD
 - But normative standardization is only 1.5 years away.
- AI/ML are/will be important in 6G
 - Work related to data center sync is an obvious consideration
- ISAC
 - Systems look like the simple monostatic case could work, but further work needed to establish accuracy limits and impact of phase noise from transmitters and from clocks.
 - Key is to make sure that objectives are accurate, to determine suitability if considering safety critical situations
- Positioning:
 - we already have a gap, can we close it? Does synchronization help?
 - Further work is needed to study this.
- NTN
 - NTN relies on GNSS, but direction could be towards a gnss-less operation. Timing distribution in satellites may become an issue.

Thank you.