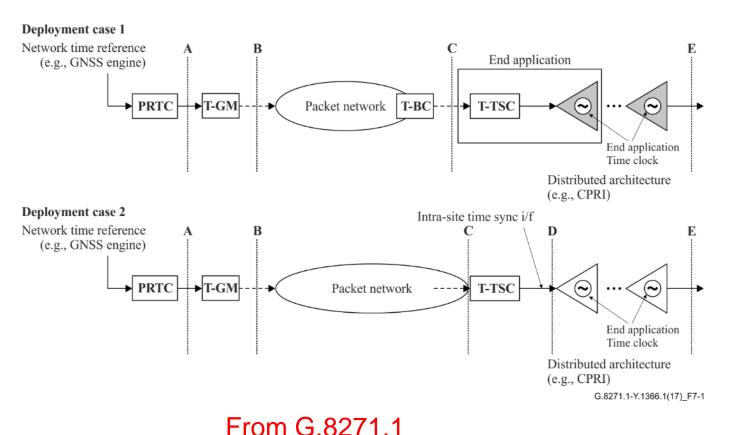


Endpoint Clocks

WSTS-2025 Kishan Shenoi

Presentation Outline

The Premise:


- Endpoint clocks are those at the very edge of the network and are responsible for providing timing accuracy and stability as prescribed by the application.
- There are multiple interacting design choices that must be made.
- An analytical framework that provides rapid results, albeit approximate, can serve as a good starting point for more detailed studies.

Presentation Outline:

- Role of Endpoint Clocks as exemplified by Wireless Radio Units (RUs)
- Analytical Model for noise accumulation in the Front Haul Network
- Endpoint Clock Time Error Variance Estimation
- Example Calculations and Analyses
- Spectral Models for Oscillators and the Enhanced Synchronous Ethernet Interface [In Back-Up slides]

Wireless RU Timing

G.8271.1 Deployment Cases:

- G.8271.1 Deployment Case 1: Endpoint T-TSC is integrated into end application
- G.8271.1 Deployment Case 2: Endpoint *TimeReceiver* Clock (T-TSC) is part of "network"

Case 1 applicable for Wireless RU:

- Endpoint implies flexibility in choice of clock bandwidth
 - No chain reaction to worry about
 - Reduce bandwidth to reject noise from FH network
 - Local oscillator performance determines allowed bandwidth reduction
- Using PHY layer recovered clock (eSyncE) to support PTP layer is "optional"
 - Long-term frequency accuracy maintained with narrow bandwidth, limited by oscillator performance

Wireless RU Timing

6.3.3.4 Config LLS-C2 (Option A: O-DU is the nearest common T-BC)

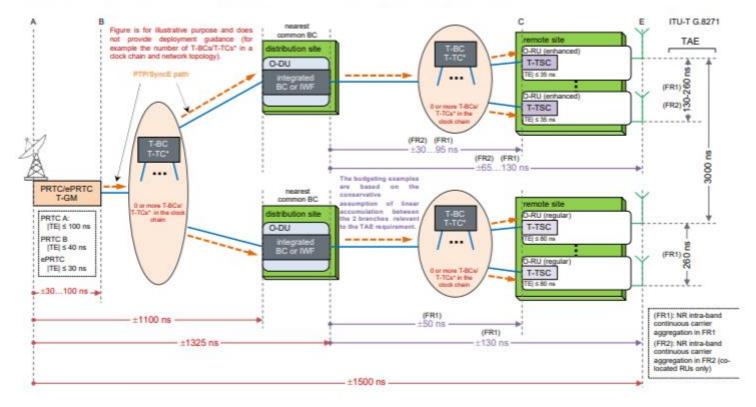
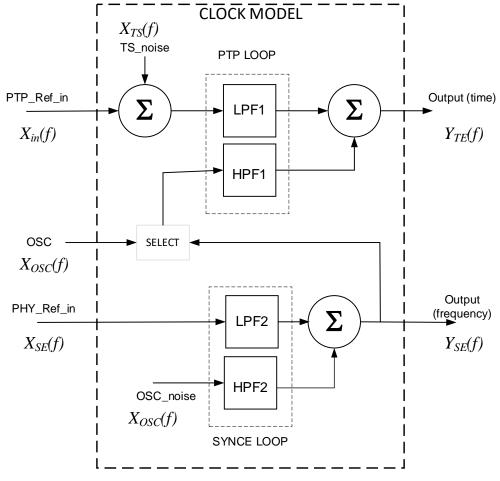


Figure 6.3.3-4: O-DU is the nearest common T-BC


Extracted from O-RAN.WG9.XTRP-SYN.0-R003-v05.00.pdf

- Timing performance dictated by End Application
 - Time Alignment Error (TAE) better than 3000ns between <u>any</u> two antennas.
 - Time Alignment Error (TAE) better than 130ns between antennas in the same cluster. TAE better than 65ns between RU and TimeTransmitter for the cluster (typically the DU).
 - Front Haul network is <u>normally</u> assumed to be Full Timing Support
- Assumptions for this analysis:
 - Front Haul is a chain of 4 T-BCs between DU and RU

5

Endpoint Clock Time Error Variance Estimation

"SELECT": chose driver for PTP loop (OSC or PHY_Layer)

LPFx and HPFx are <u>not</u> independent and have the same cut-off frequency.

PTP Loop driven by OSC:

$$Y_{TE}(f) = (|H_{L1}(f)|)^2 \cdot (X_{in}(f) + X_{TS}(f)) + (|H_{H1}(f)|)^2 \cdot X_{OSC}(f)$$

PTP Loop driven by PHY_Layer Clock ("Hybrid Mode"):

$$Y_{TE}(f) = (|H_{L1}(f)|)^2 \cdot (X_{in}(f) + X_{TS}(f)) + (|H_{H1}(f)|)^2 \cdot Y_{SE}(f)$$

PHY_Layer Clock Error Spectrum:

$$Y_{SE}(f) = (|H_{L2}(f)|)^2 \cdot X_{SE}(f) + (|H_{H2}(f)|)^2 \cdot X_{OSC}(f)$$

Endpoint Clock Time Error Variance:

$$\sigma_{TE}^2 = \int_0^{f_S} Y_{TE}(f) df$$

■ Rule of Thumb: $\max |TE| \approx 4 \cdot \sigma_{TE}$

Example Calculations and Analysis

Basic Parameters:

- Target Max|TE_L| (between DU and RU) = $\frac{65 \text{ns}}{65 \text{ns}} \Rightarrow \sigma_{TE}^2 < \left(\frac{65}{4}\right)^2 = \frac{264 \text{ (ns)}^2}{250 \text{ (ns)}^2}$
- Front Haul network = 4 devices adhering to Enhanced Synchronous Ethernet
 - All 4 with Class C noise generation (2 ns TDEV)
 - Mix of Class C (2 ns TDEV) and Class A/B (4 ns TDEV)
- Oscillator: OCXO with ADEV = $1x10^{-10}$ (TDEV = 0.057735 ns) at tau=1 sec
- Packet rate = 16/sec corresponding to f_S = 16 Hz
- Time error variance computed for the following:
 - PHY layer loop BW = 1 Hz (enhanced Synchronous Ethernet)
 - Four choices of PTP layer loop BW: 0.1, 0.01, 0.003, 0.001 Hz
 - PTP layer clock driven by either the PHY layer clock (derived from Ethernet) or driven directly by the OSC

Example Calculations (all 4 Class C T-BCs in Front Haul)

PTP Layer BW →	0.1	Hz	0.0	l Hz	0.001 Hz		
	PHY Layer contrib. (ns) ²	Max TE _L (ns)	PHY Layer contrib. (ns) ²	Max TE _L (ns)	PHY Layer contrib. (ns) ²	Max TE _L (ns)	
PTP Loop Driven by OSC directly →	0.02	45	3.4	37	353	78	
PTP Loop Driven by PHY Layer (noise at eSyncE TDEV limit) ->	14	14 47 87		52	326	75	
PTP Loop Driven by PHY Layer (Sinusoid at eSyncE MTIE limit)	281 (@ 0.1Hz)	69	2490 (@0.045Hz)	87	2500 (@0.045Hz)	71	
PTP layer noise input (Front Haul) contribution to Time Error variance →	127 (ns) ²		84 (ns) ²		29 (ns) ²		

Note: Bold red font implies error greater than 65ns ($\sigma^2 > 264$)

Example Calculations (Mix of Class C and Class A/B T-BCs) PTP loop driven by oscillator directly

PTP BW →	0.	0.1 Hz		0.01 Hz		0.003 Hz		01 Hz
	PTP layer contrib. (ns) ²	Max TE _L (ns)	PTP layer contrib. (ns) ²	Max TE _L (ns)	PTP layer contrib. (ns) ²	Max TE _L (ns)	PTP layer contrib. (ns) ²	Max TE _L (ns)
4 Class C, 0 A/B →	127	45	84	37	55	39	29	78
3 Class C, 1 A/B →	219	59	147	49	97	47	51	80
2 Class C, 2 A/B →	313	71	210	58	138	53	72	82
1 Class C, 3 A/B →	409	81	273	66	180	59	94	85
0 Class C, 4 A/B →	506	90	336	74	221	64	116	87
PHY layer noise (OSC drives PTP loop) contribution	0.02 (ns) ²		3.4 (ns) ²		39 (ns) ²		353 (ns) ²	

Note: Bold red font implies error greater than 65ns ($\sigma^2 > 264$)

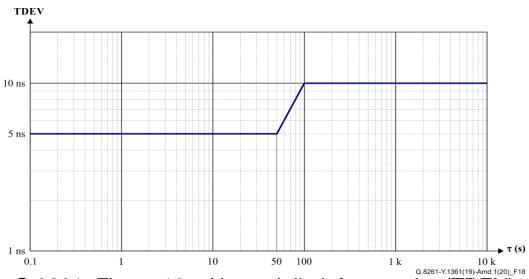
9

Analysis and Comments

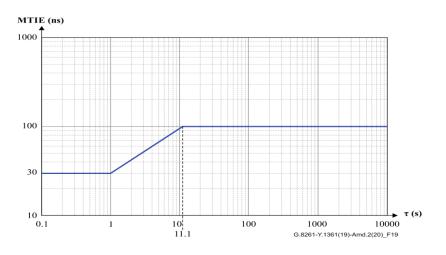
- From a noise perspective, for very tight requirements such as in a wireless RU, the endpoint clock with an adequate oscillator can operate without SyncE.
 - As a design choice allocate noise allowance between PTP and OSC contributions
 - Establish PTP bandwidth that supports this allocation to PTP layer
 - Verify that this bandwidth supports OSC contribution with chosen oscillator
 - Repeat as necessary....this mandates that the method is simple and rapid
- The known advantage of SyncE/eSyncE is the availability of a good frequency reference. However, standards compliant eSyncE can introduce significant clock noise.
 - When the PHY layer (SyncE/eSyncE) clock is utilized by the PTP layer in hybrid mode, the performance of the oscillator is not a major factor if PHY layer BW is 1Hz or greater.
 - The only shortcoming is based on allowable wander on the (enhanced) Synchronous
 Ethernet network interface. Reducing this requires an effective PHY layer BW of (much)
 less than 1Hz.

Concluding Remarks

- The use of traditional filter analyses provides quick results, albeit approximate.
 - Note: many clock recovery servo loop algorithms use non-linear methods such as packet selection and the time error performance should be better than that estimated by linear-time-invariant methods.
 - The underlying assumptions made here are reasonable to get an approximate estimate of time error behavior.
 - The quick results allow for an iterative approach to the design.
- The oscillator plays a crucial role in Endpoint Clocks for permitting narrow bandwidths.
- Oscillator manufacturers generally provide only the ADEV at 1 second. It can be shown that using this for the knee (for A_K and τ_K) is quite appropriate in most, if not all, cases (see information in back-up).


Thank You Any questions? kshenoi@sitime.com

Back-Up Slides


Enhanced Synchronous Ethernet Interface Noise Properties

G.8261: Figure 18 – Network limit for wander (TDEV) at enhanced synchronous equipment clock interfaces

G.8261: Table 9 – Network limit for wander at enhanced synchronous equipment clock interfaces expressed in TDEV

Observation interval	TDEV requirement
τ (s)	(ns)
$0.1 < \tau \le 50$	5
$50 < \tau \le 100$	0.1 τ
$100 < \tau \le 10\ 000$	10

G.8261: Figure 19 – Network limit for wander (MTIE) at enhanced synchronous equipment clock interfaces in a short chain of up to 4 clocks, traceable to a PRTC-B

G.8261: Table 10 – Network limit for wander at enhanced synchronous equipment clock interfaces expressed in MTIE

Observation interval	MTIE requirement
τ (s)	(ns)
$0.1 < \tau \le 1$	30
$1 < \tau \le 11.1$	$30 \ \tau^{0.5}$
$11.1 < \tau \le 10\ 000$	100

Enhanced Synchronous Ethernet Interface Noise Properties

G.8261: Table 10 – Network limit for wander at enhanced synchronous equipment clock interfaces expressed in MTIE

Observation interval	MTIE requirement
τ (s)	(ns)
$0.1 < \tau \le 1$	30
$1 < \tau \le 11.1$	$30 \ \tau^{0.5}$
$11.1 < \tau \le 10\ 000$	100

G.8261: Table 9 – Network limit for wander at enhanced synchronous equipment clock interfaces expressed in TDEV

Observation interval	TDEV requirement
τ (s)	(ns)
$0.1 < \tau \le 50$	5
$50 < \tau \le 100$	0.1 τ
$100 < \tau \le 10\ 000$	10

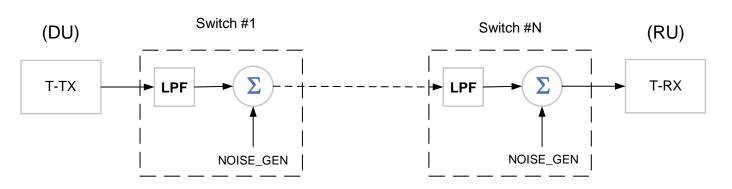
Permissible amplitude for sinusoidal wander:

$$x(t) = A \cdot \sin(2\pi f_0 t) \Rightarrow MTIE_x(\tau) = 2A \text{ for } \tau \ge \left(\frac{1}{2f_0}\right)$$

For
$$5 \text{ Hz} > f_0 > 0.5 \text{ Hz}$$
: $A \le 15 \text{ ns}$

For
$$0.5 \text{ Hz} > f_0 > 0.045 \text{ Hz}$$
: $A \le \frac{15}{\sqrt{2f_0}} \text{ ns}$

For
$$0.045 \text{ Hz} > f_0 > 0.05 \text{ mHz}$$
: $A \leq 50 \text{ ns}$


Power spectrum for random process wander:

For
$$f > f_I = (0.3/50 \text{ Hz})$$
: $S_{\eta}(f) = \left(\frac{0.75}{f}\right) \cdot (5)^2$

For
$$f_1 > f > f_2$$
: $S_{\eta}(f) = \left(\frac{0.75}{f}\right) \cdot (0.1)^2 \cdot \left(\frac{0.3}{f}\right)^2$

For
$$f < f_2 \ (= 0.3/100 \text{ Hz})$$
: $S_{\eta}(f) = \left(\frac{0.75}{f}\right) \cdot (10)^2$

Analytical Model for Network Noise Accumulation

Noise Generation spectrum : $S_n(f)$

Low Pass Filter : $H_L(f)$

Noise generation TDEV : $\sigma_{\eta}(\tau)$

Table 7-5 – Dynamic time error low-pass filtered noise generation (TDEV) for T-BC/T-TSC with constant temperature (within ± 1 K)

for 1-BC	71-18C with constant temperat	ure (within ±1K)
T-BC/T-TSC Class	TDEV limit [ns]	Observation interval τ [s]
A	4	$m < \tau \le 1~000$ (Note)
В	4	$m < \tau \le 1~000$ (Note)
С	2	$m \le \tau \le 1000$ (Note)
D	For further study	For further study
NOTE – The minimum τ value	m is determined by packet rate of 10	6 packet per second ($m = 1/16$) or 1 Pl

signal (m=1).

Extracted from G.8273.2

 Output noise spectrum as function of input (for each switch):

$$X_n(f) = |H_L(f)|^2 \cdot X_{(n-1)}(f) + S_{\eta}(f)$$

Low Pass Filter (LPF) characteristic (2nd order) assuming maximally-flat equivalent:

$$|H_L(f)|^2 = \frac{1}{1 + \left(\frac{f}{fc}\right)^4}$$

Spectrum from TDEV (approximation):

$$S_{\eta}(f) = \left(\frac{0.75}{f}\right) \cdot \left(\sigma_{\eta}\left(\tau = \frac{0.3}{f}\right)\right)^{2}$$
 $(ns)^{2}/Hz$

■ For Class C T-BC (for 0.001 < *f* < 16):

$$S_{\eta}(f) = \left(\frac{0.75}{f}\right) \cdot (2)^2 \qquad (ns)^2 / Hz$$

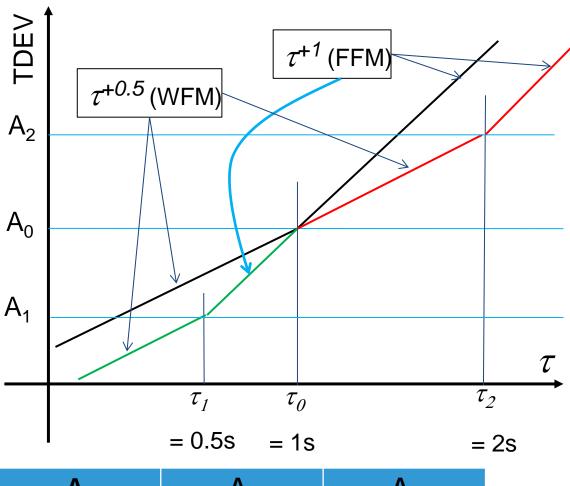
■ For Class A/B T-BC (for 0.001 < f < 16):</p>

$$S_{\eta}(f) = \left(\frac{0.75}{f}\right) \cdot (4)^2 \qquad (ns)^2 / Hz$$

Two-parameter Model for the Oscillator

$$TDEV(\tau) = \left\{ egin{array}{l} A_K \cdot \sqrt{\left(rac{ au}{ au_K}
ight)} \; ; \; au < au_K \ A_K \cdot \left(rac{ au}{ au_K}
ight) \; ; \; au \; \geq \; au_K \end{array}
ight.$$

Note: For large τ : $ADEV(\tau) \cong MDEV(\tau) = \frac{\sqrt{3}}{\tau} \cdot TDEV(\tau)$


Assumptions:

- Temperature is essentially constant
- In locked mode frequency offset and aging can be ignored
- The random noise exhibits white FM (WFM) type for shorter observation intervals and flicker FM (FFM) for longer intervals
- The high-pass characteristic seen by the oscillator is of order 2 or greater so there are no numerical anomalies for $f \sim 0$
- Behavior described by 2 parameters (A_κ and τ_κ)

$$X_{OSC}(f) = \left(\frac{0.75}{f}\right) \cdot \left(\sigma_{OSC}\left(\tau = \frac{0.3}{f}\right)\right)^{2}$$

$$X_{OSC}(f) = \begin{cases} A_{K}^{2} \cdot \left(\frac{0.75}{f}\right) \cdot \left(\frac{0.3}{f \cdot \tau_{K}}\right) ; f > \frac{0.3}{\tau_{K}} \\ A_{K}^{2} \cdot \left(\frac{0.75}{f}\right) \cdot \left(\frac{0.3}{f \cdot \tau_{K}}\right)^{2} ; f \leq \frac{0.3}{\tau_{K}} \end{cases}$$

Utilizing Oscillator specification of ADEV @ tau=1s

A_0	A ₁	A ₂
0.057735ns	0.0288375ns	0.08165ns

Oscillator spec: ADEV = 1×10^{-10} @ $\tau = 1$ s

Approach:

- Assume that the break point is at τ = 1s.
- For such oscillators and the bandwidths of interest, the estimate of noise leaking into the time output will be conservative.
- In the following, three cases are evaluated, all three have ADEV = 1×10^{-10} @ $\tau = 1 \text{s}$.
- Time error contribution (in (ns)²) with 0.1Hz measurement filter evaluated below.

PTP Layer Bandwidth

$ au_{\mathbf{k}}$	A _k	0.1Hz	0.01Hz	0.001Hz
1s	0.058ns	0.0177	3.43	353.2
0.5s	0.029ns	0.0176	3.42	352.5
2.0s	0.082ns	0.0091	1.72	176.6

Example Calculations (4 switches – Either Class C or Class A/B T-BCs)

		PTP BW	= 0.1Hz	PTP BW = 0.01Hz		PTP BW = 0.003Hz		PTP BW = 0.001Hz	
SyncE	FH Ntwk	Pwr(TE _L) (ns) ²	Max TE _L (ns) (4 <i>σ</i>)	Pwr(TE _L) (ns) ²	Max TE _L (ns) (4 <i>σ</i>)	Pwr(TE _L) (ns) ²	$Max TE_L $ (ns) (4 σ)	Pwr(TE _L) (ns) ²	Max TE _L (ns) (4 <i>σ</i>)
PHY	4 Class C	141	47	171	52	226	60	355	75
BW = 1.0 Hz	4 Class A/B	520	91	423	82	392	79	442	84
PHY	4 Class C	132	46	157	50	212	58	341	74
BW = 0.1 Hz	4 Class A/B	511	90	408	81	378	78	427	83
PHY	4 Class C	127	45	96	39	143	48	272	66
BW = 0.01 Hz	4 Class A/B	506	90	348	75	309	70	359	76
OSC	4 Class C	127	45	87	37	94	30	382	78
ONLY	4 Class A/B	506	90	339	74	260	64	469	87

Example Calculations (4 switches - Mix of Class C and Class A/B T-BCs)

		PTP BW = 0.1Hz		PTP BW = 0.01Hz		PTP BW = 0.003Hz		PTP BW = 0.001Hz	
SyncE	FH Ntwk	Pwr(TE _L) (ns) ²	Max TE _L (ns) (4 <i>σ</i>)	Pwr(TE _L) (ns) ²	Max TE _L (ns) (4 <i>σ</i>)	Pwr(TE _L) (ns) ²	$Max TE_L $ (ns) (4 σ)	Pwr(TE _L) (ns) ²	Max TE _L (ns) (4 σ)
PHY	3 Class C	233	61	234	61	268	65	377	78
BW = 1.0 Hz	3 Class A/B	423	82	360	76	351	75	442	84
PHY	3 Class C	224	60	220	59	254	64	363	76
BW = 0.1 Hz	3 Class A/B	413	81	346	74	337	73	428	83
PHY	3 Class C	219	59	159	50	185	54	294	69
BW = 0.01 Hz	3 Class A/B	409	81	285	68	268	65	359	76
OSC	3 Class C	219	59	150	49	136	47	404	80
ONLY	3 Class A/B	409	81	276	66	219	59	469	87

Thank You Any questions? kshenoi@sitime.com

