Latest Advancements in the ePRTC and cnPRTC

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Introduction

- Latest version of ePRTC (enchanced primary reference time clock) published (March 2024) by the ITU in G.8272.1
- First version of cnPRTC (coherent network primary reference time clock) published (March 2024) by the ITU in G.8272.2
 - Builds on the ePRTC in G.8272.1 by networking these ePRTC clocks (an ePRTC combines GNSS and atomic clocks)
 - Connections made with high-accuracy links for transporting accurate time and frequency, which are both required
 - Time scale produced in real time with this network of distributed clocks
 - Resilience provided by ePRTC autonomous atomic clocks and by networked ePRTCs
- Both can make use of UTC(k) such as that produced by national metrology laboratories in a number of ways
- Both are expected to have new versions completed mid 2025 and published late 2025

G.8272.1 ePRTC

International Telecommunication Union

Standardization Sector

Recommendation

ITU-T G.8272.1 (01/2024)

SERIES G: Transmission systems and media, digital systems and networks

Packet over Transport aspects – Synchronization, quality and availability targets

Timing characteristics of enhanced primary reference time clocks

G.8272.1 ePRTC

			Page	e
1	Scope		. 1	l
2	Referen	ces	. 1	l
3	Definiti	ons	. 1	l
4	Abbrevi	iations and acronyms	. 2	2
5	Conven	tions	. 2	2
6	Time er	ror, wander and jitter in locked mode	e 2	2
	6.1	Time error in locked mode	. 2	2
	6.2	Wander in locked mode	. 3	3
	6.3	Jitter	. 5	5
7	Phase d	iscontinuity	. (5

8	Transient response and holdover performance					
	8.1	Transient between time locked and frequency reference locked	6			
	8.2	Phase/time holdover based on frequency reference during loss of				
		phase/time input	6			
9	Interfac	es	8			
	9.1	Phase and time interfaces	9			
	9.2	Frequency interfaces	9			
Annex	к A – ePF	RTC autonomous primary reference clock requirements	11			
Apper	ndix I – e	PRTC functional model	12			
Apper	ndix II – d	ePRTC holdover model	14			
	II.1	General clock model	14			
	II.2	Ideal holdover model	14			
	II.3	ePRTC holdover performance characterization	15			
Apper	ndix III –	Testing ePRTC holdover	17			
Apper	ndix IV –	ePRTC locked mode duration and holdover period	19			
Appendix V – ePRTC parametric holdover						
Biblio	graphy		23			

G.8272.1 ePRTC Future Release

Current:

8.2.1 Time error in holdover mode

For L > 40 days, the holdover period H is 40 days.

Draft:

8.3 Recovery from holdover

9.1.1 Input interfaces for phase and time

AppendixVI ePRTC used as a travelling clock

This appendix describes considerations for the use of an ePRTC as a travelling clock. One important application is for Disaster Recovery Management (DRM).

G.8272.2 cnPRTC

International Telecommunication Union

Standardization Sector

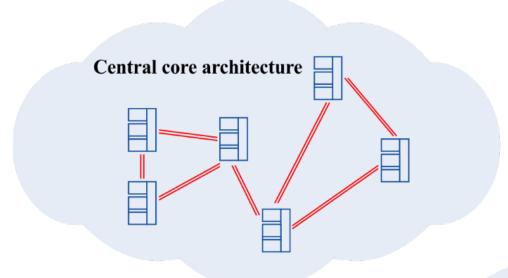
Recommendation

ITU-T G.8272.2 (01/2024)

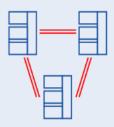
SERIES G: Transmission systems and media, digital systems and networks

Packet over Transport aspects – Synchronization, quality and availability targets

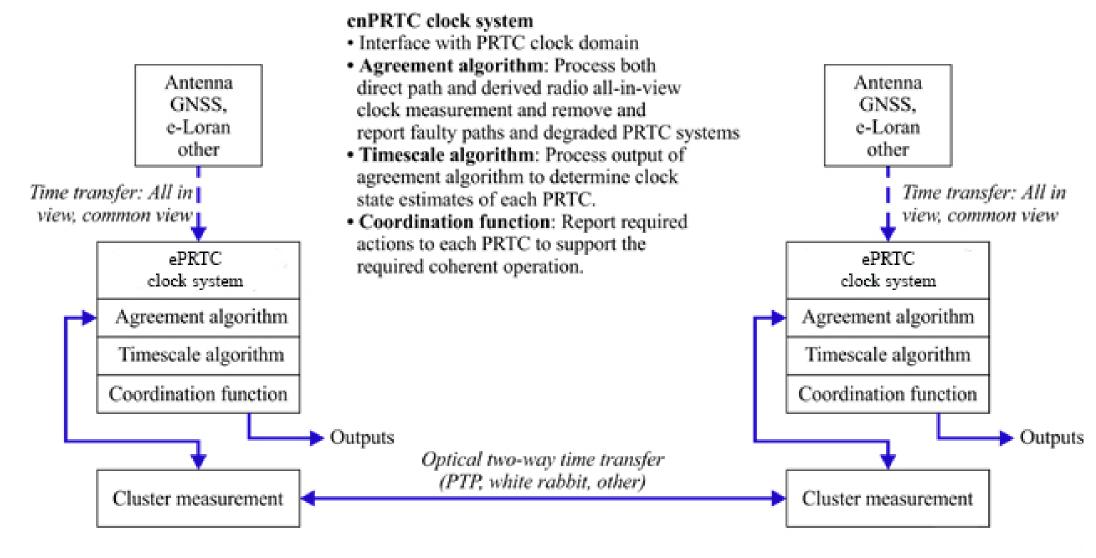
Timing characteristics of coherent network primary reference time clocks



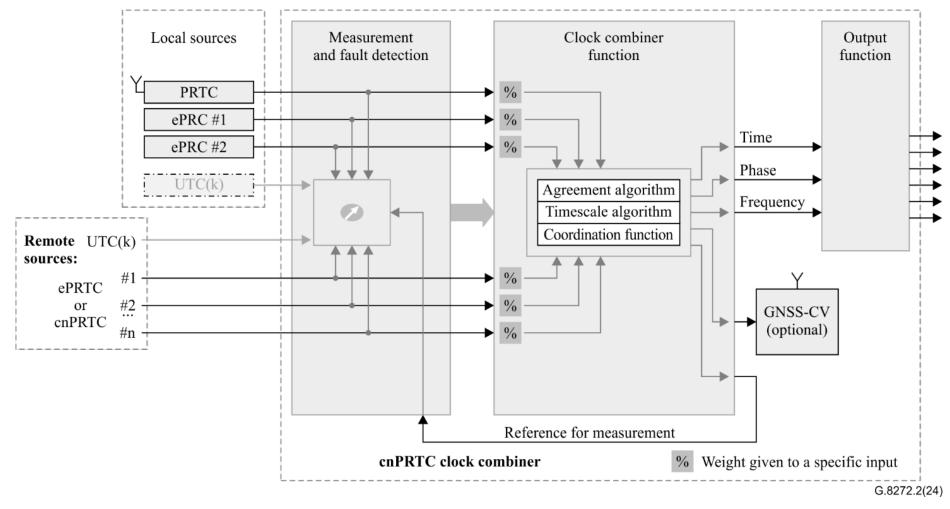
G.8272.2 cnPRTC


		Page						
1	Scope	. 1						
2	References							
3	Definitions							
4	Abbreviations and acronyms							
5	Conventions							
5	Time error, wander and jitter in locked mode	. 2						
	6.1 Time error in locked mode	. 3						
	6.2 Wander in locked mode	. 3						
	6.3 Jitter	. 5						
7	Phase discontinuity							
3	Transient response and holdover performance							
9	Interfaces							
10	Coherency							
Anne	x A – UTC(k) usage for cnPRTC (optional)	. 7						
Apper	ndix I – cnPRTC functional architecture	. 9						
	I.1 Introduction	. 9						
	I.2 cnPRTC functional architecture	. 9						
Apper	ndix II – cnPRTC deployment scenarios	. 13						
Apper	ndix III – Flexible synchronization network based on cnPRTC	. 14						
Biblio	ography	. 15						

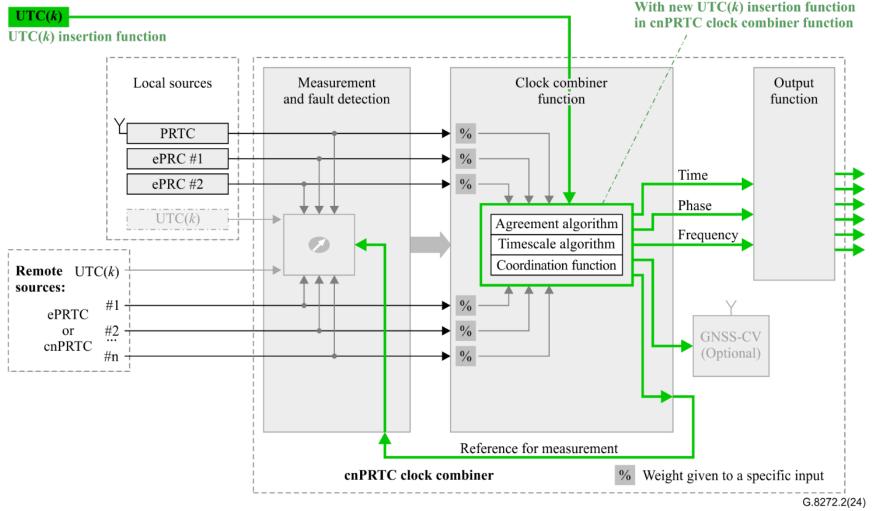
G.8272.2 cnPRTC in the Network


Regional architecture

G.8272.2(24)


G.8272.2 cnPRTC Functional Architecture

• High-accuracy connections include time transfer with PTP using fiber and common view using satellites


G.8272.2 cnPRTC Functional Block Diagram

- Input sources can include both local and remote sources. Local sources can be PRTC, atomic clock (e.g., ePRC) or a local UTC time laboratory
- Remote sources are delivered via a high-accuracy time-transfer from neighbouring cnPRTC nodes or UTC(k) sources

G.8272.2 Annex A: UTC(k) Usage for cnPRTC

The UTC(k) interfaces in the "remote sources" and "local sources" blocks are inputs to the measurement functions and are intended to be part of the clock combiner algorithm. The optional UTC(k) insertion function is intended to work differently. If the UTC(k) insertion function, highlighted in green in Figure A.1, is used, the clock combiner algorithm is superseded, and the UTC(k) insertion function is used directly.

G.8272.2 cnPRTC Future Release

Current:

10 Coherency

Coherency performance for a cnPRTC is for further study.

Draft:

10 Coherency

10.1 Coherency requirement level 1

When the systems are operating in the normal, locked mode, the maximum relative time error shall not exceed 40 ns.

G.8272.2 cnPRTC Future Release

	Used sources and logical functions									
Deployment scenario #	Local sources		Remote sources			Logical functions				
			Time Transfer links from/to UTC(k)							
	PRC/ ePRC	PRTC	e/cnPRT (e. g. IEEE high-ad profile, PTP-FTS for measure-		from a remote UTC(k) lab	Measure ment function	Clock Com- biner function	Output function	GNSS Commo n view	Descriptions
1	YES	YES	Ment NO	bling NO		Optional	YES	YES		Stand-alone ePRTC according to G.8272.1
2	YES	YES	YES	NO		YES	YES	YES		Like cnPRTC, but monitoring the remote sources only
3	YES	YES	YES	YES	Optional	YES	YES	YES		Remote sources are used for frequency alignment only to contribute to local frequency
4	YES	YES	YES	YES		YES	YES	YES		Final cnPRTC architecture , remote sources are actively used to contribute to local time

Summary

- ePRTC increased holdover from 14 days to 40 days, and will add holdover recovery, time/phase inputs, and ePRTC as travelling clock; cnPRTC will add coherency requirement and deployment scenario for remote frequency alignment
- cnPRTC networks ePRTC clocks which are themselves comprised of GNSS for time and atomic clocks for stable frequency
- The cnPRTC can use UTC(k) in a number of ways:
 - As a local source into the clock combiner algorithm
 - As a remote source into the clock combiner algorithm
 - As the direct source for cnPRTC time and frequency
- The cnPRTC provides resilience in several ways:
 - ePRTC/cnPRTC node standalone autonomous atomic clock resilience
 - cnPRTC clocks elsewhere in the network providing accurate time and frequency via highaccuracy links

Thank you

Lee Cosart

Research Engineer

lee.cosart@microchip.com

Phone: +1-408-428-7833

