

±1ppb MEMS OCXO Technology for Extended Holdover

Gary Giust, Director Systems Architecture Jagdeep Bal, Director Customer Engineering WSTS - May 9, 2024, San Diego, CA USA

Agenda

- 1 Motivation
- 2 Construction
- 3 Performance
- 4 Summary

Traditional (Quartz) OCXOs

Construction

To minimize influence of ambient operating temperature, set oven temperature higher.

Limitations

- Limitations of traditional quartz OCXOs
 - Don't meet holdover targets in real world environments
 - o Airflow, temperature changes impact performance
- Application
 - 5G equipment in densified deployment

o DU in edge datacenters

Solution – MEMS OCXO

Silicon MEMS Resonator Construction

- 500 µm x 500 µm vacuum sealed resonator die
- Low weight, high tensile strength → high shock and vibration resistance
- 200k Q-factor → low noise, excellent stability
- Encapsulate resonator vacuum → high stability, low aging
- -55°C to 125°C operating temperature
- High volume scalable process

Dual-MEMS Resonator Designed for Improved Temperature Tracking

MEMS Temperature Sensor

- MEMS resonator and sensor are both silicon technologies, enables easy integration
- Excellent thermal coupling between two MEMS resonators in same die
- Enables compensation of fast temp changes

Quartz Temperature Sensor

- Quartz resonator and silicon sensor are different technologies, limits how close can place together
- Physical separation limits thermal coupling, and thus response time to thermal gradients

Performance Benchmarks

- ±1 ppb OCXOs
- Customers often select an OCXO based on its frequency stability
- Benchmarks use popular quartz device that customers compare it against

Dual-MEMS Technology – Frequency versus Temperature

Single Device – Minimal Hysteresis

20 Devices – Low variation part-to-part

Dual-MEMS Technology – dF/dT

Dual-MEMS – Resistance to Breezy Airflow

Thermal Profile for Holdover Testing

Dual-MEMS Holdover – Real World Conditions, 1 ppb OCXOs

Dual-MEMS OCXO Technology Enables Real-world Synchronization

Application	Environment	Technology Benefit
Pole mounted DU/RU	Thermal change, vibration	Extends service continuity
SmartNIC	Space-constrained	1/2 size PCIe card with 8-hour holdover
Fan-cooled routers, switches	Complex design (thermal moat, simulation, cover, etc.)	Environmental resilience simplifies designs
Remote equipment	Limited access for maintenance	Highly reliability

Thank You!

Dual-MEMS – 24 Hour Holdover with Aging Compensation

