Synchronising the cloud to support AI applications

rakon

Presenter: Ullas Kumar

Outline

- Background
- AI and HPC applications
- Convergence of networks
- Clocking architectures
- Deployment options

Traditional applications

Managing databases

~microsecond precision to reduce the Commit-wait cycles of nodes

Optimising search functions

• Sub-microsecond time synchronization, for cache invalidation -> consistency

Real-time content delivery

- Precise time stamping to assist the content updates, user interactions, and data changes
 - -> Enables Event Ordering

Faster responses to end users

• Time synchronisation reduces the variance in response times

Al workloads need synchronised time

Synchronising parallel workloads

• AI workloads, especially training, involve synchronised parallel jobs across nodes. - 33% of AI elapsed time is spent waiting for the network (Meta)

Time and order-sensitive workloads

- Frame-accurate correlation of video data across distributed encoders/decoders
- Maintaining Audio/Video Sync across processing streams
- Coordinating parallel video processing pipelines

Real-Time processing

• Surveillance systems, autonomous vehicles, or live video analytics

Enhanced User experience for 3D simulation

• Precise video timing across multiple nodes

Overview of AI hardware architectures

Scaling up as one machine – AI clusters of GPUs.

Needs a single time domain

2

GPU

Racks

Synchronisation overview

GPU interconnects, Network Interfaces and Switching elements to support high-performance synchronisation

Distribution Unit (DU) fits Data Centre (DC)

Matching capabilities

• Computing, storage and networking

Proximity to end applications

- URLLC use cases, autonomous driving
- Real-time application off-loading

Private 5G advantages

- Secure Industrial applications with secure on-prem infrastructure
- Integrated AI-ML applications

RRU – Remote Radio Head AAU – Active Antenna Units eCPRI – Enhanced CPRI DU – Distribution Unit T-GM – Telecom Grand Master

RRU

((,))

RRU

Data centre architectures

Various architectures

• Spine and Leaf architecture is popular

Synchronisation exists in data

centres

- Managing databases
- Optimising search functions
- Real-time content delivery
- Faster responses to end users

Synchronisation performance

- In millisecond range
- Not enough to meet telecom requirements

Telecom DC synchronisation

Objective:

- Use the DC as DU/CU systems in 5G
- Drive Radios from Data Centres

Enable telecom level synchronisation

• Atomic, GNSS or Network Clocks

Method to transfer the clock

• Within data centres

Clocking schemes

Transparent clock architectures

• Most common systems within the data centre use transparent clock techniques

HRM by TAP

• Recommends the use of transparent clocking architecture

Synchronising physical layer

Synchronising the physical layer gives access to traceable clock

• Every single node is synchronised

10

AI data centres and HPC systems are moving towards high-precision clocking

• Sub-microsecond precision enables a variety of applications

Implementations of boundary clocks have enabled higher performance than those of transparent clocks.

High-stability, low-cost digital control oscillator solutions enable such implementations.

Q & A

