Perspectives on Network and Computer Timekeeping

WSTS 2024 / San Diego, CA / 2024-05

Kevin B. Stanton, Ph.D. Stanton Consulting LLC kevin.b.stanton@gmail.com/ Linkedin

End-to-end Time Distribution

Local

Galactic

Timing in the Last Centimeters *⇒ The Need*

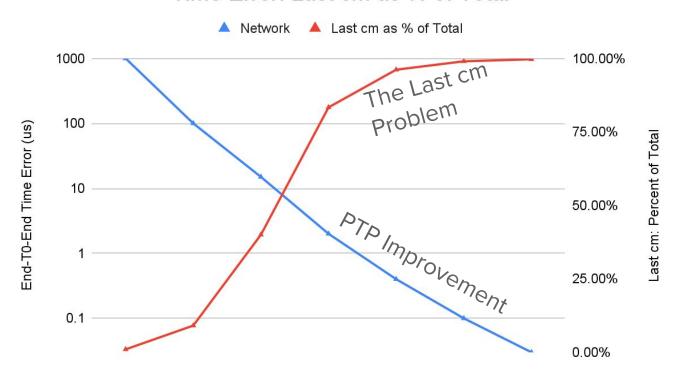
Timing in the Last 2.54 Centimeters ("the last inch problem")

Timing in cyber-physical systems: the last inch problem

John C. Eidson* Kevin B Stanton[†]
*University of California at Berkeley, Berkeley, CA, USA

†Intel Corporation, Hillsboro, OR, USA

Abstract—Distributed cyber-physical systems (CPS) are in-Section V then discusses how these primitives enable timing


"In either case, close attention must be paid to path latency between the PHY and the PTP clock in the microprocessor. In particular, **substantial degradation of accuracy** can occur when transferring PTP time from a **network interface card to the microprocessor** over a serial load/store interface such as PCI Express."

"However, a recent **PCI Express enhancement** for in-band time transfer over PCI called **Precision Time Measurement (PTM)** promises to transfer time to the microprocessor with **accuracy in the nanoseconds**[35]."

https://ptolemy.berkeley.edu/projects/chess/pubs/1156.html

We Knew that PTP Would both Solve and Create Problems

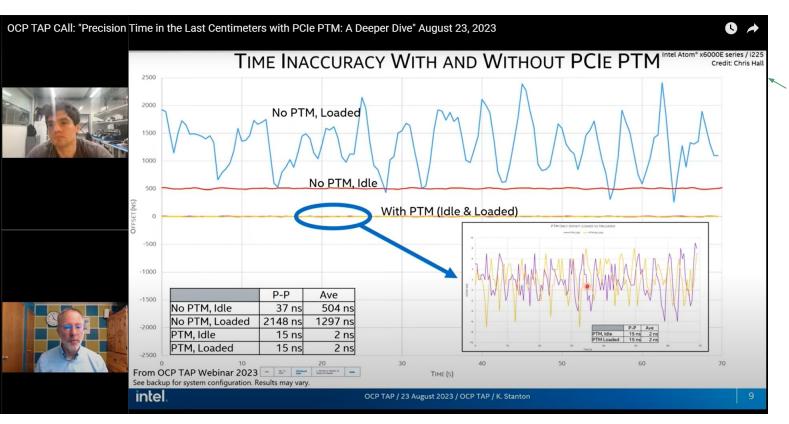
Time Transfer To Software (Within the Compute System)

The Way We've Always Done It
(Software-Based)

- 1. Read CPU Counter
- 2. Read PTP Counter in PCIe NIC

 Wait (for the long & variable delay)
- 3. Read CPU Counter

⇒ What could possibly go wrong?


<u>Changing the Rules with PTM</u> <u>Hardware-Based</u>

- 1. Extend the CPU Counter to PCIe NIC
- 2. NIC "simultaneously" captures
 - a. CPU Counter
 - b. PTP Counter in PCle NIC

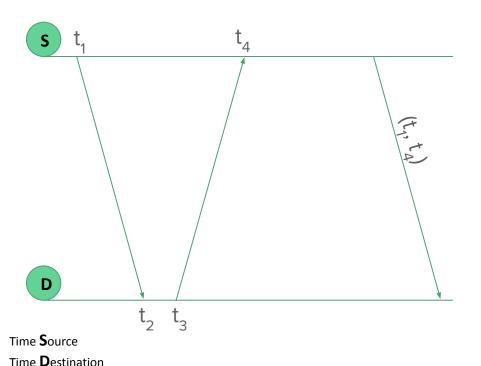
⇒ Synchronous Logic: "Simultaneous"

Timing in the Last Centimeters ⇒ The Cure

Software Time versus PTP Time via PPS Outputs

This Chris H. has a Poster at WSTS 2024. Check it out!

https://youtu.be/9OILFLV-Sfc?si=U9EX2iB4PTiGiIV3&t=899


Last Centimeters Time-Sync...

...is "Solved"

Link to Youtube on Previous Page

Two-Way Transfer: Detail

Link Delay = $[(t_4-t_1) - (t_3-t_2)] / 2$ Clock Offset = $[(t_2-t_1) - (t_4-t_3)] / 2$

Source time at $t_2 = t_1 + \text{Link Delay}$ = $t_1 + [(t_2 - t_1) - (t_3 - t_2)] / 2$

Questions

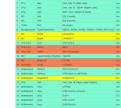
- 1. Is the Delay Symmetrical
 - a. Over Ethernet?
 - b. Over PCIE tree
 - c. Over SOC Fabric?

Timing in the Last Centimeters ⇒ Lessons Learned

The Path to PTM

The Three Criteria

https://commons.wikimedia.org/wiki/File:Three_first_fingers.JPG


IEEE 1588 / PTP

1588

PCle PTM Spec

CPU and SoC Timekeeping Upgrade

PTM Readiness

List of Precision Time Measurement Readiness [edit]

٠	Class +	Manufacturer +	Product •	Quanta +	TGPIO +	PTM Status
1	CPU	Intel	Core, Gen 11 (Tiger Lake)	4ns		Supported
2	CPU	Intel	Core, Gen 12 (Alder Lake)	4ns		Supported
3	CPU	Intel	Core, Gen 13 / Gen14 (Raptor Lake)	4ns		Supported
4	CPU	Intel	Xeon, Gen 4 (Sapphire Rapid)	2ns		Supported
5	NIC	Intel	i225 (Foxville)	4ns		Supported
6	NIC	intel	i226 (Foxville)	4ns		Supported
7	FPGA	Intel	Intel Agitex	4ns		Supported
8	Microprocessor	Texas Instruments	AM64x / AM65x / AM68x / AM69x / DRA82x ARM SoCs	4ns		Supported
9	NIC	Nvidia	ConnectX-6	2ns		Beta Tested
10	NIC	Nvidia	ConnectX-7	2ns		Beta Tested
11	Time Card	OCP	Time Card 2	4ns		Supported
12	Time Card	Safran	ART2	4ns		In Progress
13	Time Card	Adtran	5400 SyncModule	4ns		in Progress
14	NIC	Liquid-Markets-Solutions	ÜberNiC	4ns		Supported
15	NIC	Broadcom	P2100G	4rs		In Progress
16	Conindum	UCSO	Corundum	4ns		In Progress
17	Motherboard	ASRock	SP2C741D16-2T	2ns	2 exposed	Supported
18	Motherboard	ASRock	W790D8UD-1L1N2T/BCM	2ns	2 exposed	Supported
19	Motherboard	Supermicro	X13SEDW-F	2ns		Beta Testing
20	CPU	Intel	Core, Gen 14 (Raptor Lake Refresh)	4ns		Supported
21	Motherboard	Asus	W790SE	2ns	1 under BGA	Supported
22	Motherboard	Asus	Z790 Maximus Extreme	2ns	1 under BGA	Supported
23	Motherboard	Asus	Z690-l	2ns	1 under BGA	Supported
24	Motherboard	Asus	Z790-G WIFI	4ns	1 under BGA	Supported
25	Motherboard	Asus	Z690-Extreme	4ns	1 under BGA	Supported
26	Motherboard	Asus	W790-ACE	2ns	1 under BGA	Supported
27	Motherboard	Asus	Z790-i	4ns	1 under BGA	Supported

https://www.opencompute.org/wiki/PTM_Readiness

The Future of Time Synchronization ⇒ What's Next?

Google's Andrew Fikes on Time

https://www.youtube.com/watch?v=nvlt0dA7rsQ

"Everybody tells you [that] you *can't trust Time*. The clock on your server is *absolutely* something that you *can't trust*, and you develop this *innate fear* of that thing. [Distrust of Time] is Legendary...

I can tell you that I *completely trust our time system*, and it has made my life so much easier. Having a *source of global ordering* that I don't have to reach out to talk to, that I can *reference locally*, is just a *huge huge thinking shift*.

- ... It took two or three versions [of the Google database, Spanner] to get over that [fear of relying on time]"
- Andrew Fikes (VP of Infrastrustructure @ Google, CoudNext 2019) (Emphasis Mine)

The Future (Beyond Accuracy)

APIs Beyond "Now()"

Authenticated Time Source

Resilient Timing Sources / Paths

Explicit Time Accuracy / Jitter Bounds

Explicit Consistency / Availability Tradeoffs

Non-Newtonian Timekeeping

DEFEND TODAY, SECURE TOMORROW.

TIME - THE INVISIBLE UTILITY

WHY IS TIME IMPORTANT?

Time is critical to certain services used within most organizations, yet many organizations are unaware of their dependence on time, the source of their time, or the existence of a world time standard. As systems grow in complexity, becoming global and mobile, access to resilient, accurate, and precise time is a necessity in both the private and public sectors worldwide. Without accurate and resilient time, critical functions and services can become unreliable, inaccurate, or unavailable.

SECTORS AND INDUSTRIES DEPENDENT ON TIME

Communications	Transportation	Power Grid	Finance	Security	IT
Telecommunication Cloud Operations Internet of Things (IoT)	Aviation Maritime Pipelines Rail	Frequency Monitoring Multi-rate Billing Fault Detection	Regulatory Requirements ATM Networks	Cryptography Access Control Forensics Surveillance	Smart Devices Incident Investigations

WHY SHOULD YOU BE CONCERNED ABOUT TIME NOW?

GPS has become the *de facto* time standard for many commercial users because of its relatively low cost and ubiquitous availability. In 1997, the President's Commission on Critical Infrastructure Protection

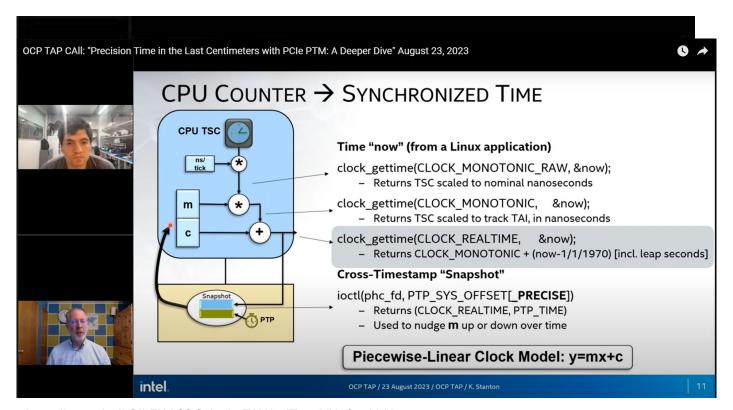
https://www.cisa.gov/sites/default/files/2023-02/Technical-Level Resilient Timing Overview-CISA Fact Sheet 508C.pdf

Summary

The Last Centimeters Problem is "solved"

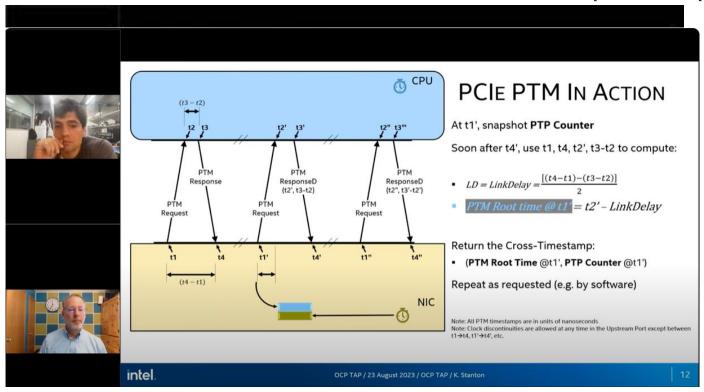
Implement, adopt, and deploy PTM

2. Software applications need more information


Today, they get only

now()

As we increase our TRUST in the TIME, let's not forget to inform the application


Thank You!

Software Access to "Now"

https://youtu.be/9OILFLV-Sfc?si=ohnZ9U07JT7eoYN6&t=1211

PCle PTM: How it works — between chips / chiplets

https://youtu.be/9OILFLV-Sfc?si=6n4kS-W7645JfwJd&t=1975