

Space-Time Synchronization via Wireless Two-Way Interferometry (Wi-Wi)

2023/3/16

@ WSTS2023

National Institute of information and

communications technology (NICT)

Global alliance department

Nobuyasu Shiga

email: shiga@nict.go.jp

😯 🚺 💜 🖬 Wireless 2 Way interferometry (Wi-Wi)

We adopted the satellite technology to achieve Time synchronization (pico second accuracy) and Distance measurement (mm accuracy) at extremely high precision with Low cost and small size.

Prototype modules

- 920MHz wireless communication module
- Fully compatible with IEEE 802.15.4
- Range 100m/5km(high power ver. best effort)
- Phase synchronization jitter: 16ps
- Time synchronization: 35ns

Satoshi Yasuda made them all!

Willes synchronized

W i W i 2 applications to introduce

①Data center application

Wi-Wi over the air comparison inter-connects different clock network

②Security application

Wi-Wi's precise measures of the wireless propagation environment provides **Physical Layer Security**

Will Application to Data Center

Wi-Wi RCB (formfactor)

Time card (Timebeat version)

• We have Wi-Wi in RCB form factor under development (Bord is ready).

Willing Time card in big picture

- Time card is now equipped with 4-hat time comparison.
- It means it can now pick the best clock autonomously (in theory).

Wi Wi Resilient time network

Wi-Wi over the air comparison inter-connects different clock network

• Synchronization Over the air introduces another layer of regiliency.

Wi Wi Heike Kamerlingh-Onnes

- A guy who found Superconductivity?
- Yes, but his area of specialty is in Cryogen (Low temperature Physics)
- Nobel prize winner in 1913
- "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium"
- Nature always surprise us when we enter into a new regime.
- Pico-second synchronization over wide area will surprise us!

Wi Wi Reflection of wireless signal causes problem?

Propagation Phase \rightarrow distance variation

Phase measurement affected by reflection

• We made use of "unwanted reflection"

Will 2 Application to Security

Virtual Wiretap Channel Based on Wireless Two-way Interferometry (Wi-Wi)

2022/12/4-8

@ Globecom 2022

National Institute of Information and Communications Technology

(NICT) Japan

NICT

WiWi

N Shiga, S Yasuda, K Yonaga, K Takizawa, M Yoshida

email: shiga@nict.go.jp

• Slide from Globecom 2022: <u>doi.org/10.1109/GLOBECOM48099.2022.10000896</u> 11

Willing Physical Layer Security

Cryptosystems

Physical Layer Security

- Mathematically reasonable but unproven security
- And/Or pre-shared secret key

- Security based on physical property of communication channel
- Quantum resistant security

Vi Vi Proposed Wi³-tap channel

- Wi-Wi can measure the total propagation delay phase accurately.
- One can send signal by modulating the clock and hide the modulation in the noise of total propagation delay phase.

Wi-Wi and Wi³-tap protocol

Wi-Wi

 $\Phi A \equiv \Phi A B - \Phi A A$

 $\Phi B \equiv \Phi B A - \Phi B B$

 $\Phi c \equiv (\Phi A - \Phi B) / 2 (clock phase)$

 $\Phi d \equiv (\Phi A + \Phi B) / 2$ (Propagation phase)

 Alice modulate the measured value by Δφ and Bob sees it as a modulation on Φc.

 $\Phi A \equiv \Phi A B - \Phi A A - \Delta \Phi$

 $\Phi B \equiv \Phi B A - \Phi B B + \Delta \Phi$

$$\Phi c \equiv (\Phi A - \Phi B) / 2 - \Delta \Phi$$

$$\Phi d \equiv (\Phi A + \Phi B) / 2$$

Vi Vi Proposed Wi³-tap channel

- Wi-Wi can measure the clock difference and the propagation delay phase.
- We use dynamic reflective environment to hide message.
- It is almost impossible to estimate the propagation delay accurately for devices in a reflective environment.

W Experiment with **D**d-Jammer

- **Od-Jammer made the encryption** work!
- Secrecy Capacity Cs=0.8

Will ϕ_d -Jammer is necessary

 If the propagation environment doesn't change, Eve can read the modulation through hi pass filter. (even better!)

Wi³-tap channel has great potential

Wi³-tap channel is looking great because

- Quantum resistant cryptography
- No need of pre-shared key
- Requires little Computational resource
- No need of special equipment

The precision of Wi-Wi opens a new regime!

WiWi Conclusion

- Wi-Wi \times Time Card for Data Center application.
- Wi-Wi will provide another route of time synchronization for robustness.

• Wi-Wi for security Accurate propagation delay measurement provides secure communication

Please contact at: shiga@nict.go.jp

Let's get surprised by picosecond synchronization!