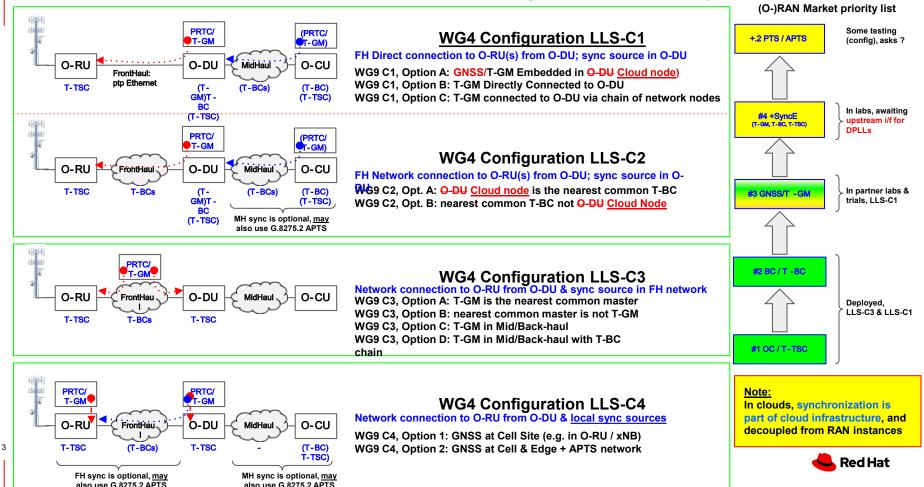
Getting in Sync with Open Source Addressing RAN Requirements

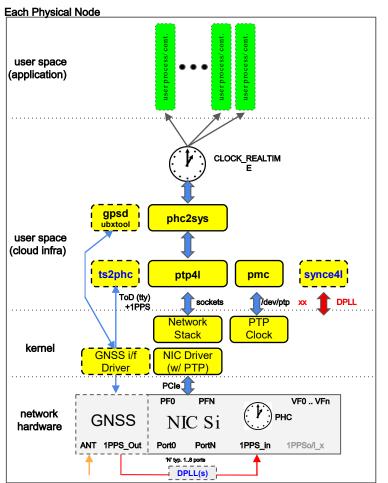
Workshop on Synchronization and Timing Systems March 14th, 2023 Vancouver, Canada

WSTS

Pasi Vaananen Systems Architect, Office of the CTO Telco Enablement & Solutions



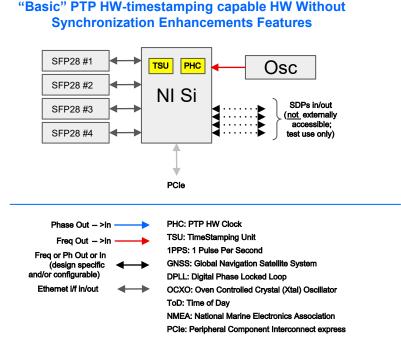
Agenda

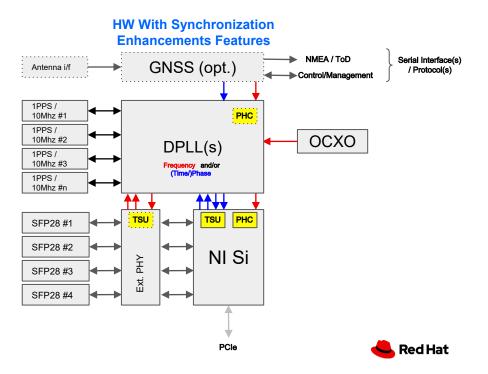

- > (O-)RAN synchronization network topologies and clock types
- Server node synchronization HW & SW implementation
- ITU-T Performance requirements summary
- Our Test Environment & Capabilities Overview
- Test results examples for different clock types
- Impact of SyncE on time/phase Synchronization performance

O-RAN "LLS-Cx" vs. Target Clock Types

Synchronization Components in Linux / k8s nodes

Key Components of the node Synchronization implementations


- HW specific synchronization SW support features are implemented in HW device drivers
- HW Clock (PHC) support in NIC Si is required for high accuracy; SyncE requires DPLLs
- Linuxptp is an Open Source project implementation of the PTP SW stack for Linux
- **ptp4I** implements Boundary Clock (BC) and Ordinary Clock (OC), it synchronizes PTP hardware clock (PHC) to remote master clock
- ptp4I is very flexible, and can be configured to support specific profiles, assuming that HW & driver supports associated features (e.g. PHC, L3 vs. L2 transport, accuracy targets)
- **phc2sys** synchronizes two or more clocks in the system, typically used to synchronize the system clock from PTP / PHC
- pmc PTP management client; 1588 basic management access for ptp4l
- ts2phc synchronizes PHC(s) from external reference signals, such as 1PPS_in and ToD messages used in multi-card T-BC, and GNSS driven T-GM configurations
- synce4I : implements ESMC protocol and associated state transition controls
- **gpsd/ubxtool** can be used to interface w/ GNSS receivers / u blox specifics for configuration management and status monitoring
- In k8s clusters, synchronization functions are configured and monitored with k8s, and associated general CM, PM and FM event and metrics tools.
- O-RAN WG6 specifies a notification interface to inform synchronization users about node synchronization state changes


Red Hat

2 kinds of typical HW from Sync. & SW Perspective

- Synchronization optimized designs add various functions, typically DPLL and PHY clock recovery/generation, as well as phase/f req physical inputs and outputs, and GNSS options all which need SW enablement for configuration, monitoring and control purposes
- Various design specific ways to achieve equivalent things, none is "right" or "wrong", they are just different; goal is to ab stract to the "right" level through Linux interfaces and device drivers
- FPGA cards and SoCs with embedded NI functionality are generally similar in design from sync perspective (i.e. incorporate "N I Si" block below)

The Test applicability - non-SyncE and SyncE capable HW

Test Cases	Basic HW	Enhanced HW (w/ SyncE)			
G.8273.2 7.1.x: TE Noise Generation	Yes, all; 7.1.4.x TE_R defined for Class-C only				
G.8273.2 7.2.x: Noise Tolerance	Yes 7.2.1 (A/B) vs. 7.2.2 (C)	Yes, 7.2.2 (Class C)			
G.8273.2 7.3.x: Noise Transfer	7.3.1 PTP-PTP only	Yes, 7.3.1 PTP-PTP & 7.3.3 phy. layer freq to PTP (C/D)			
G.8273.2 7.4.1 Transient Response	(7.4.1.2 PTP only; perf is FFS)	Yes			
G.8273.2 7.4.2 Holdover Performance	(7.4.2.1 PTP only; perf is FFS)	Yes; Class-C mask FFS			

- We do also conduct the applicable tests for 1PPS and/or 10Mhz phase/freq. Reference outputs if those outputs are <u>supported</u> as physical interface with connectors
- In "standard" cards without connectorization, we may also use these for testing if available e.g. through pin headers, but they are expected to **not** be used/usable/supported in end-application

Red Hat

- Also, G.8262.1 eEEC test sequence typically applies to SyncE capable cards, not shown here
- We view eEEC tests more of DVT tests, minimum SW impact; primarily FW/driver/DPLL configs

G.8273.2 T-TSC & T-BC Noise Gen Reqs Summary

Parameter	Class-A	Class-B	Class-C	(Class-D); Still WIP in ITU-T	Notes
7.1 Max. Absolute Time Error; max TE	≤ 100 ns	≤ 70 ns	≤ 30 ns	(≤ 15 ns)	Unfiltered measurement, absolute value
7.1 Max. Absolute Time Error; max TE _L	-	-	-	≤ 5 ns	0.1Hz low-pass filtered, 1000s measurement, absolute value
7.1.1 Max. Constant Time Error; cTE	≤ ±50 ns	≤ ±20 ns	≤ ±10 ns	(≤ ± 4 ns)	cTE Averaged over 1000s
7.1.2 Max. dynamic Time Error, 0.1Hz Low-Pass Filtered; dTE _L (MTIE)	≤ 40 ns		≤ 10 ns	(≤ 3 ns)	MTIE Mask, 1000s observation interval constant temp., (10000s for A/B variable temp.)
7.1.2 Max. dynamic Time Error, 0.1Hz Low-Pass Filtered; dTE_L (TDEV)	4 ns		2 ns	(≤ 1 ns)	TDEV Mask, 1000s observation interval at constant temp.
7.1.3 Max. dynamic Time Error, 0.1Hz High Pass Filtered; dTE _H	70 ns p-p		FFS (30ns p-p?)	(15 ns p-p)	Peak-to-peak value, 1000s measurement
7.1.4.1 Relative constant Time Error Noise Generation; cTE _R	FFS		≤ ±12 ns	FFS	cTE averaged over 1000s
7.1.4.2 Relative dynamic Time Error Low-Pass Filtered Noise Generation; dTE_{RL} (MTIE)	FFS		≤ 14 ns	FFS	MTIE Mask; 1000s observation interval at constant temp.

Note: Accuracy required is primarily determined by specific Use Case requirements & number of elements on the synchronization transfer path

Synchronization Test Setup at Red Hat TelcoLab

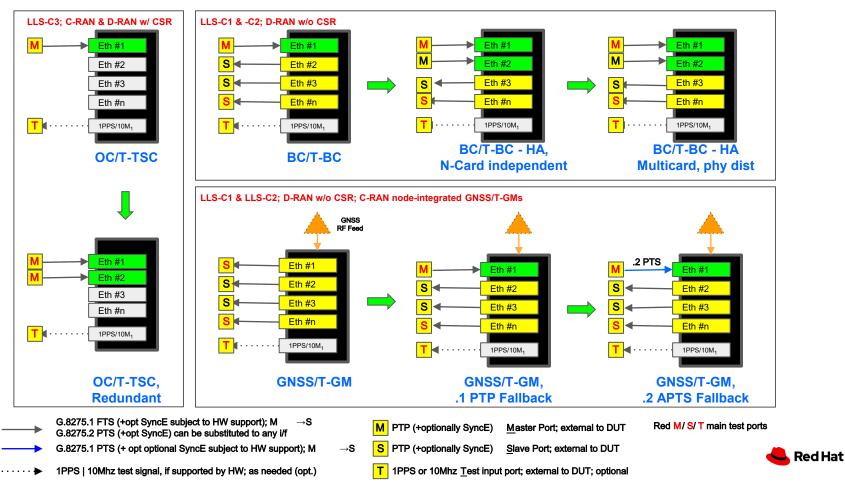
Path - delay calibrated Optical single - mode Switch for remote/automated test reconfiguration

Spirent TestCenter for Bulk Traffic testing (≤ 1.2 Tbps)

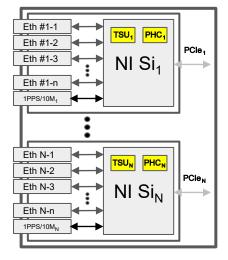
Spirent TC for Detailed Perf. Testing (<800Gbps), w/ PTP/SyncE slave emulation

Calnex Attero - 100G **Network Emulation System**

Calnex Paragon Neo PTP/SyncE analyzer w/ comprehensive SW feature set for Telco PTP & SyncE


Keysight 8ch Scope w/ time&freq analysis SW

Not Shown: O - RU & UE emulation systems, Test O - RU's, 50Ghz Spectrum Analyzer, very high


-end scope and OTA performance test gear etc

Test Target Adjacencies for Black-Box DUTs Overview

Server DUTs as "Grey Boxes", multi-card (simplified)

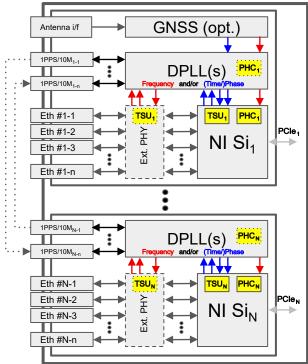
OC/BC (1..N "basic" NICs)

OC/BC, Target Configurations:

- Up to N*n PTP Interfaces
- OC: typ 1 or 2 (HA, 1 or 2card) active i/f's
- BC: typ N*(1*slave + n-1*Master)
- OC: 1*ptp4l + 1*phc2sys
- BC: N*ptp4I + 1*phc2sys

10

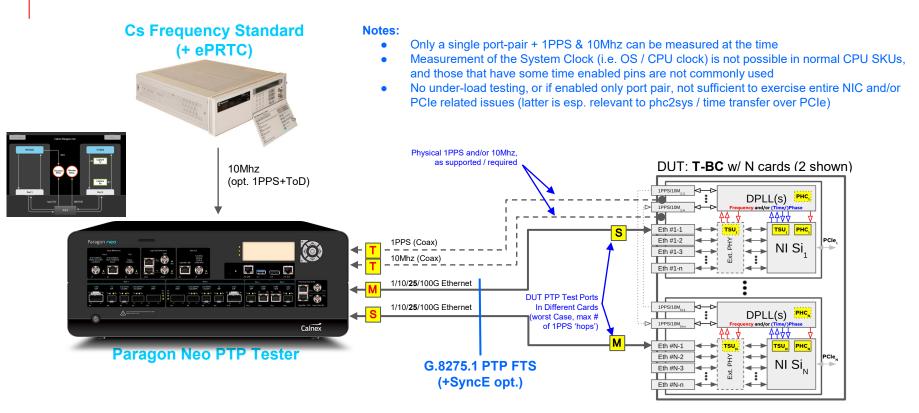
• 1PPS/10M: out only, lab / field test


T-TSC/T-BC (1..N "enhanced" NICs)

1PPS/10M_{4.4} **PHC**₁ DPLL(s) 1PPS/10M1-n Frequency and/or (Time/)Phase **↑↓↓** PHC₁ Eth #1-1 **TSU**₁ Eth #1-2 FH PCle₁ NI Si₁ Eth #1-3 ËX. Eth #1-n 1PPS/10M_{N-1} PHC_N DPLL(s) 1PPS/10M_{N-r} Frequency and/or (Time/)Phas M↓↓ TSU_N Eth #N-1 Eth #N-2 PHY PCIe_N NI Si_N Eth #N-3 Щ. Eth #N-n

T-TSC/T -BC, Target Configurations:

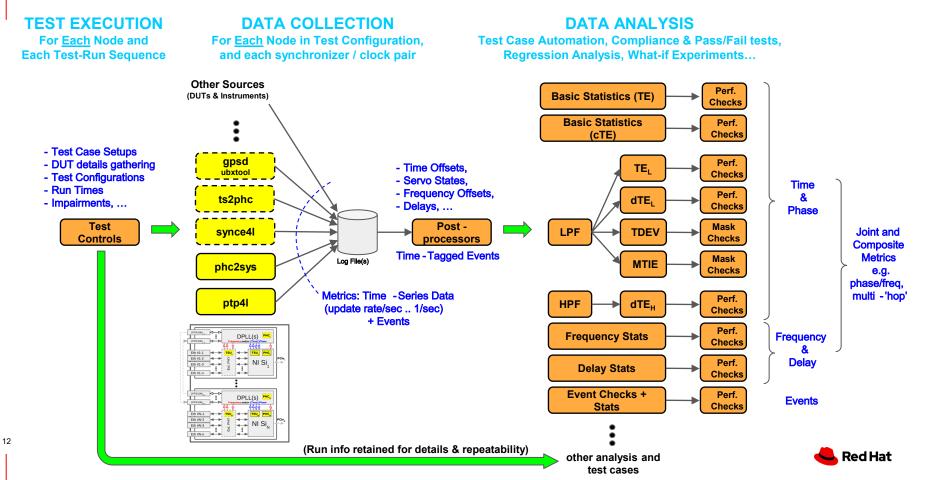
- Up to N*n PTP Interfaces
- T-TSC: typ 1..2 (HA, -1or 2-card) active i/f's
- T-BC: typ N*(1*slave + n 1*Master) i/f's, possibly less slaves than cards when cards synchronized w/ physical signals
- T-TSC: 1*ptp4I + 1*phc2sys + 1*synce4I
- T-BC: 1..N*ptp4I + 1*phc2sys + 1*ts2phc +1*synce4I
- 1PPS/10Mhz monitoring (out) + in (multicard sync with physical signals, using ts2phc to sync PHCs)



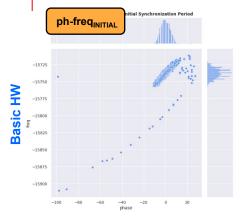
GNSS/T - GM Target Configurations:

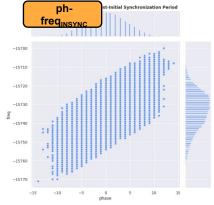
- Basics as with T-TSC/T-BC
- Plus 1xGNSS (using ts2phc, different config)
- +gpsd and/or +ubxtool, dep. on use case
- T-GM: up to N*n Master i/f's

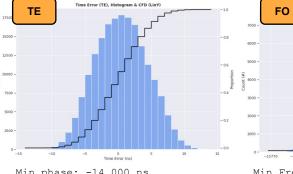
Set-up for a G.8275.1&G.8273.2 T-BC (T-TSC) w/ Neo



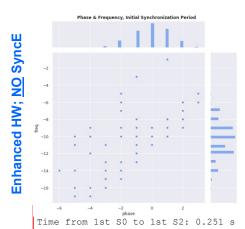
OC/T-TSC Clock Tests:

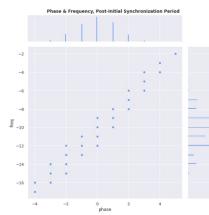

- OC/T-TSC configuration is subset, at least one Neo Master to at least one DUT Slave port
 - OC/T-TSC tests require measurement signal back to tested, i.e. 1PPS
- In Practice, if it meets specific class as (T-)BC, it will do at least as well as T-TSC/OC, and (T-)BC test does not mandate need for 1PPS physical signals

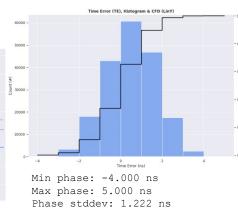


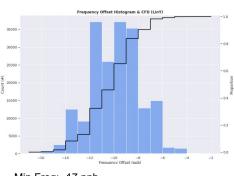

Using the Linux / PTP metrics and events

Linux / PTP metrics analysis G.8275.1, ptp41

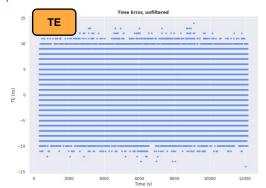

Min phase: -14.000 ns Max phase: 14.000 ns Phase stddev: 3.891 ns

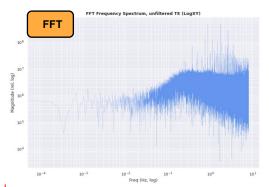


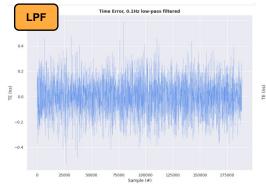

Freq stddev: 9.708 ppb


quency Offset Histogram & CFD (LinY)

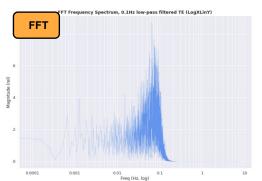
Time from 1st S0 to 1st S2: 0.188 s

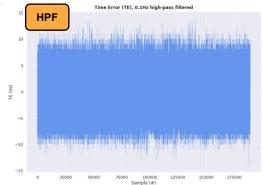




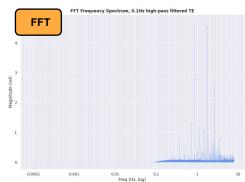

Min Freq: -17 ppb Max Freq: -2 ppb Freq stddev: 2.061 ppb **Red Hat**

Linux / PTP metrics analysis; G.8275.1ptp41basic HW

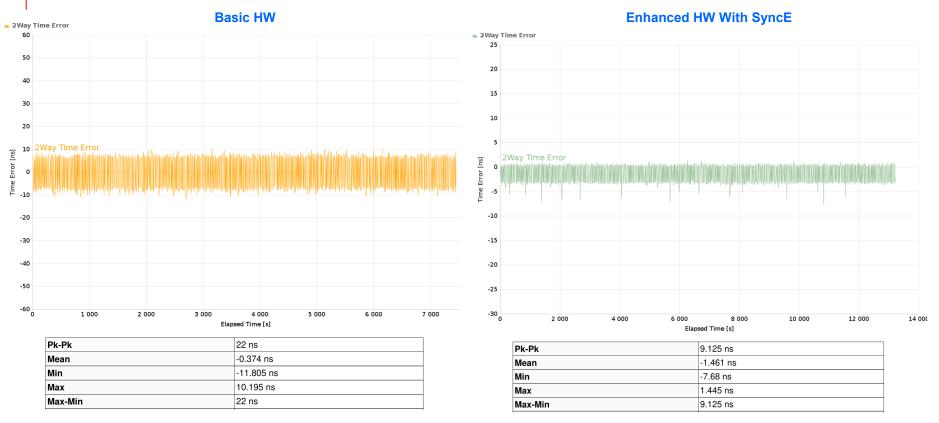



pk-pk phase: 28.000 ns Mean phase: -0.000 ns Min phase: -14.000 ns Max phase: 14.000 ns Phase stddev: 3.891 ns Max |TE|: 14.000 ns

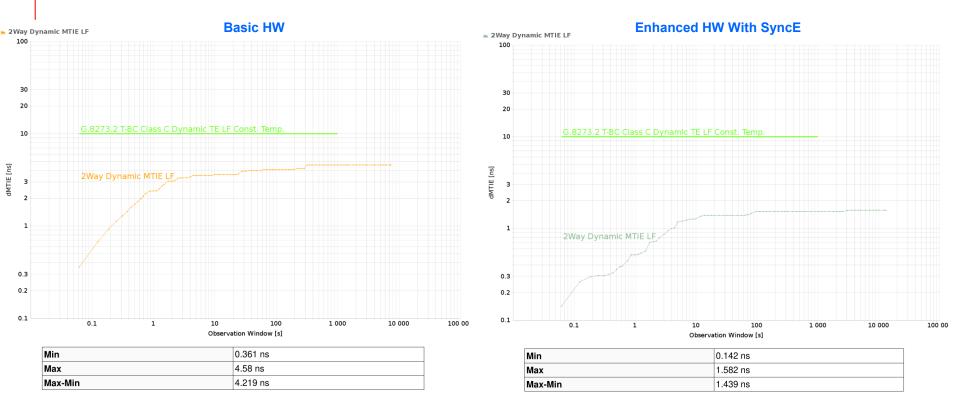
pk-pk lpf phase: 1.115 ns Mean lpf phase: -0.000 ns Min lpf phase: -0.526 ns Max lpf phase: 0.589 ns Lpf phase stddev: 0.127 ns Max lpf |TE|: 0.589 ns



pk-pk hpf phase: 27.806 ns Mean hpf phase: 0.000 ns Min hpf phase: -13.900 ns Max hpf phase: 13.905 ns hpf phase stddev: 3.887 ns Max hpf |TE|: 13.905 ns

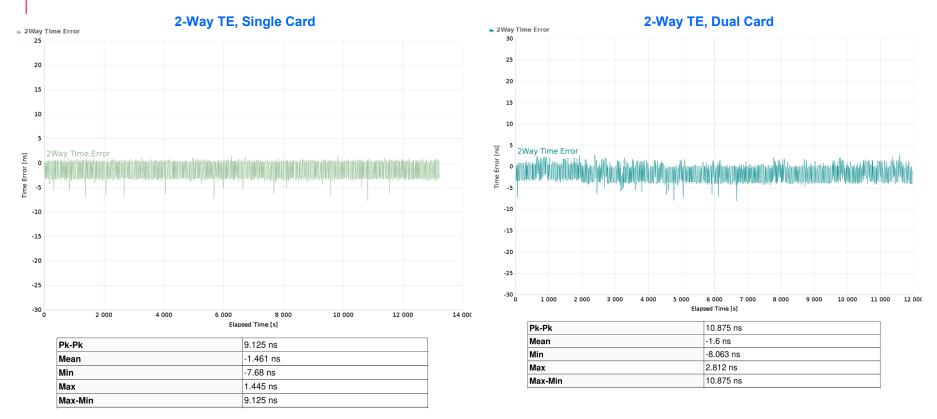

MTIE

TDEV


7.1T-BC Noise Generation - Unfiltered TE

- 15
- Both DUTs do pass Class C for TE with lots of margin (Class-C requires 30ns for Unfiltered |TE|)
- The performance with SyncE in this test is ~2x better then without it in the same configuration

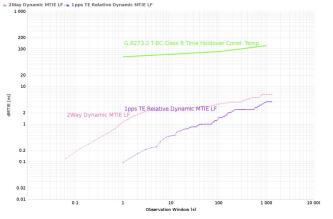
7.1.2 T-BC Noise Generation - Dyn. MTIE LF Class-C mask


Both DUTs do pass Class C for MTIE LF 10ns mask (as well as TDEV mask) with margin

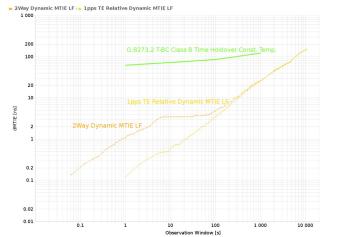
16

• The performance with SyncE in this test is >2x better then without it in the same configuration

7.1T-BC Noise Generation - 1vs. 2-Card with SyncE

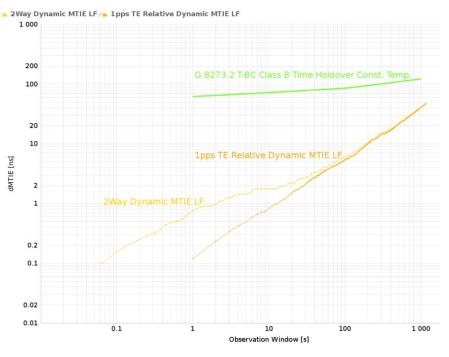

• In this test, the BC slave port is in 1st card, and master port is in 2nd card

- Combination still passes Class C for TE with margin (important, multi card configs are common !)
- This is primarily enabled by physical phase/freq signals to sync the 2nd card from the 1st



Holdover Performance - SyncE HW ("good" OSC+DPLL)

A: Holdover (dMTIE), w/ SyncE



B: Holdover (dMTIE), SyncE lost

18

C: Holdover (dMTIE), Freq FreeRUN - no SyncE lock/use at all

- Mask (above) is for Class-B, Class C/D is FFS
- <u>~constant</u> temperature (lab !) tests ONLY done at Red Hat
- Case A: SyncE assisted holdover:~6ns @1000sec
- Case B: SyncE lost holdover:~25ns @1000 sec
- Case C: FreeRun, No SyncE:~47ns @1000 sec

Get Involved & Get In Sync

Upstream projects - SW & open HW

- <u>Chrony</u> (primarily NTP)
- LinuxPTP project
- Linux kernel common sync if/s
- Linux HW dev. Drivers- sync features
- OpenCompute <u>TAP</u>
- OpenCompute Networking
- OpenCompute Telco
- OpenCompute Telco Edge
- TIP OOPT
- TIP RAN projects
- Jupyter, MatplotLib, Scipy/Numpy, pandas, ...
- Allantools

Key Standards / Spec. Organizations

- O-RAN WG<u>4</u>,5,6,7,8 and 9...
- ITU <u>SG15 Q13/1</u>5
- IEEE P802 / <u>802.3cx</u> (TS accuracy)
- IEEE<u>P1588</u>
- 3gpp

How to contact me

Pasi Vaananen:pvaanane@redhat.com

Special Thanks to

 LinuxPTP community, Linux Kernel Community, our NIC Si/card & FPGA Si/card HW partners, vRAN SW partners, Calnex & Spirent & Keysight

