Demonstrating Covert Channel Vulnerabilities in Precision Time Protocol (PTP)

Aron Smith-Donovan, Abby Marsh Macalester College

March 14th, 2023

WSTS 2023 Vancouver, BC

Overview — Precision Time Protocol (PTP)

- IEEE 1588 standard
 - first defined in 2002 as alternative to Network Time Protocol (NTP)
- highly accurate clock synchronization within local networks
 - majority of devices lack necessary hardwar for satellite or Internet connectivity and cannot access external time sources

Overview — Covert Channels

- communicate information outside of normal channels
 - use methods not anticipated in normal operation ullet
 - not covered by standard security policies •
 - often difficult to detect
- hiding information where someone wouldn't think to check
 - in networks: hiding a secret message inside a nsecret message
- how can we evaluate potential covert channels?
 - throughput = amount of data that can be transmitted \bullet
 - **detectability** = ability to resist both general and targeted detection measures •
 - **robustness** = ability to maintain communication despite potential disruptions ullet

Covert Channel Approaches

- classifying covert channels: •
 - encoding approach used
 - type of data object affected
 - potential usage contexts
- potential targets:
 - unvalidated fields direct = writing data directly
 - optional fields lacksquare
 - configurable structures
 - configurable intervals
 - on-demand messages

URL: https://arxiv.org/abs/2106.08654.

indirect = affecting behaviors or configurations

EN1. Artificial Element-Loss Modulation EN2. Elements/Features Positioning EN3. Elements/Features Enumeration EN4. State/Value Modulation EN4.1. Reserved/Unused State/Value Modulation EN4.2. Random State/Value Modulation EN4.3. Blind State/Value Modulation EN5. Feature Structure Modulation EN5.1. Size Feature Modulation	Modulation of Non-temporal Behavior
EN2. Elements/Features Positioning EN3. Elements/Features Enumeration EN4. State/Value Modulation EN4.1. Reserved/Unused State/Value Modulation EN4.2. Random State/Value Modulation EN4.3. Blind State/Value Modulation EN5. Feature Structure Modulation EN5.1. Size Feature Modulation	EN1. Artificial Element-Loss Modulation
EN3. Elements/Features Enumeration EN4. State/Value Modulation EN4.1. Reserved/Unused State/Value Modulation EN4.2. Random State/Value Modulation EN4.3. Blind State/Value Modulation EN5. Feature Structure Modulation EN5.1. Size Feature Modulation	EN2. Elements/Features Positioning
EN4. State/Value Modulation EN4.1. Reserved/Unused State/Value Modulation EN4.2. Random State/Value Modulation EN4.3. Blind State/Value Modulation EN5. Feature Structure Modulation EN5.1. Size Feature Modulation	EN3. Elements/Features Enumeration
EN4.1. Reserved/Unused State/Value Modulation EN4.2. Random State/Value Modulation EN4.3. Blind State/Value Modulation EN5. Feature Structure Modulation EN5.1. Size Feature Modulation	EN4. State/Value Modulation
EN4.2. Random State/Value Modulation EN4.3. Blind State/Value Modulation EN5. Feature Structure Modulation EN5.1. Size Feature Modulation	EN4.1. Reserved/Unused State/Value Modulation
EN4.3. Blind State/Value Modulation EN5. Feature Structure Modulation EN5.1. Size Feature Modulation	EN4.2. Random State/Value Modulation
EN5.1. Size Feature Modulation EN5.1. Size Feature Modulation	EN4.3. Blind State/Value Modulation
EN5.1. Size Feature Modulation	EN5. Feature Structure Modulation
EN5.2 Character Feature Modulation	ENS.1. Size Feature Modulation

RN1n. Artificial Element-Loss Modulation (derived from EN1)
RN1.1n. Artificial (Forced) Reconnections Modulation (der. fr. RN1n)
RN2n. Elements/Features Positioning (derived from EN2)
RN3n. Elements/Features Enumeration (derived from EN3)
RN3.1n. Artificial Retransmissions Mod. (derived from RN3n)
RN4n. State/Value Modulation (derived from EN4)
RN4.1n. Reserved/Unused State/Value Modulation (der. fr. EN4.1)
RN4.2n. Random State/Value Modulation (derived from EN4.2)
RN4.3n. Blind State/Value Modulation (derived from EN4.3)
RN5n. Feature Structure Modulation (derived from EN5)
RN5.1n. Size Feature Modul. (derived from EN5.1)
RN5.2n. Character Feature Mod. (derived from EN5.2)

PTP Vulnerability Assessment

- determining potential covert channels:
 - which approaches are impossible?
 - which approaches impede functionality?
- assessing potential strategies
 - throughput, detectability, robustness
- feasible options:
 - forced reconnections modulation
 - artificial retransmissions modulation
 - unused value modulation

Pattern name	Evaluation	Reason	
Event/Element Interval	possible, but not feasible	likely to impair function and/or	
Modulation		throw errors \rightarrow high detectability	
Rate/Throughput	possible, but not feasible	likely to impair function and/or	
Modulation		throw errors \rightarrow high detectability	
Event Occurrence	not possible	no suitable target objects	
Frame Corruption	possible, but not feasible	viable throughput conditions	
		likely to impair function and/or	
		throw errors \rightarrow high detectability	
Artificial Element-Loss	possible, but not feasible	likely to impair function and/or	
		throw errors \rightarrow high detectability	
Artificial (Forced)	feasible	not likely to throw errors;	
Reconnections		throughput limited by network	
Modulation		configuration; false-positive rate	
		high	
Elements/Features	not possible	no suitable target objects	
Positioning			
Elements/Features	not possible	no suitable target objects	
Enumeration			
Artificial	feasible	not likely to throw errors;	
Retransmissions		increased throughput conditions	
Modulation		also increase detectability	
State/Value Modulation	possible, but not feasible	likely to impair function and/or	
		throw errors \rightarrow high detectability	
Reserved/Unused	feasible	not likely to throw errors;	
State/Value Modulation		throughput limited by	
		established message rates;	
		false-positive rate low	
Random State/Value	not possible	no suitable target objects	
Modulation			
Blind State/Value	possible, but not feasible	likely to impair function and/or	
Modulation		throw errors \rightarrow high detectability	
Feature Structure	possible, but not feasible	likely to impair function and/or	
Modulation		throw errors \rightarrow high detectability	
Size Feature Modulation	possible, but not feasible	likely to impair function and/or	
		throw errors \rightarrow high detectability	
Character Feature	not possible	no suitable target objects	
Modulation			

Covert Channel Development

- selected approachunused value modulation
- PTP message header
 - metadata structure included in all PTP message types ullet
 - 34 bytes long, 7 bytes unused

Covert Channel Prototype — Text Encoding

array of hexadecimal ASCII encodings: 2

> $\{0x70, 0x61, 0x79, 0x6C,$ 0x6F, 0x61, 0x64

array of binary values: 3 $\{0111, 0000, 0110, 0001,$ 0111, 1001, 0110, 1100, 0110, 1111, 0110, 0001, 0110, 0100

Covert Channel Assessment

- detectability
 - no observed change in message rates (0.01 seconds)
 - no explicit errors
- throughput
 - overall: 7 bytes/message
 - leader ⇒ follower: 24.36 bytes/second
 - follower ⇒ leader: 6.95 bytes/second

	Value			
Metric	Encoded leader	Encoded follower	Encoded overall	
time connected	60 7.52 seconds	600.81 seconds	60 7.52 seconds	
totaltransmitted	2115 messages	597 messages	2712 messages	
transmission rate	3.48 messages/second	0.99 messages/second	4.46 messages/second	
channel throughput	24.36 bytes/second	6.95 bytes/second	24.36 bytes/second	

leader clock

follower clock

Risk Assessment

- covert channel limitations:
 - require high level of access, more likely to appear as tools in a larger attack ullet
 - implementation is difficult and requires extensive knowledge of the target, ulletmalicious actors likely to use easier approaches when possible
- standalone attack scenarios:
 - data exfiltration
 - data insertion
- compound attack scenarios:
 - communication channel \bullet
 - reconnaissance

Remediation and Prevention

- covert channel remediation:
 - demonstrated approach (unused value modulation) can be prevented witeld • validation techniques
 - covert channel detection and prevention measures are highly targeted and can only be established after a vulnerability is discovered
- general prevention:
 - implement thorough validation and error checking \bullet
 - assess for vulnerabilities and prioritize security at all stages •
 - consider potential attack consequences for specific environments ullet
 - critical use cases, including industrial control systems (ICSs), should anticipate extensive damage in the event of a successful attack

Summary and Conclusion

- covert channels
 - targeted remediation is possible for known vulnerabilities
 - general security best practices can restrict utility by decreasing throughput or increasing detectability
- PTP
 - vulnerable to covert channelbased attacks; recent research has demonstrated additional vulnerabilities not covered here
 - standalone attack unlikely due to difficulty of access
- asking the right questions:
 - how might this environment be vulnerable to cyberattacks?
 - what damage could we expect if a successful attack occurred? ullet
 - how can we prevent this attack and/or reduce the potential damage?

Thank you!

Aron Smith-Donovan, Macalester College aronsmithdonovan@gmail.com

Dr. Abby Marsh, *Macalester College* amarsh lamacalester.edu

tinyurl.com/PTPcovertASmithDonovan