
Bringing High-Accuracy to Datacenter in a Scalable Way March 2023

Benefits of Precise Time in Datacenters

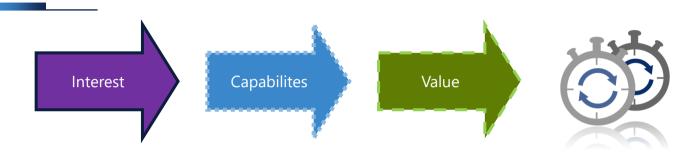
Coherency

- Ensure that the data are the same on distributed devices
- Reduce the number of data replicas

Efficiency

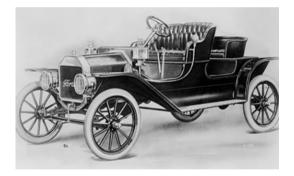
- Pre-schedule tasks to handle known low latencies
- Pipelined assignments to improve efficiency
- Reduce overload to ensure coherency (ε uncertainty bound)

Reduce CPU cycles and energy costs


Visibility

- Have a clear view of the real order of events
- Measure latency to control bottlenecks
- Carefully allocated resources to avoid any problems

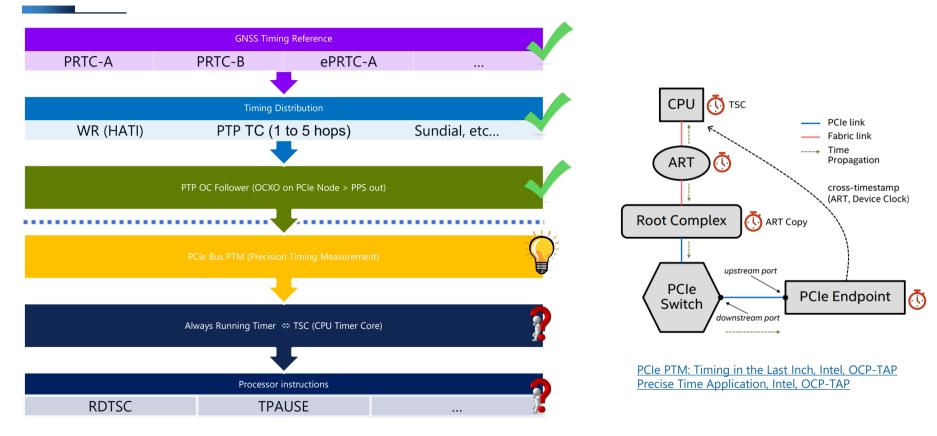
2 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way



About Precise Time in Datacenters

Latency is one of the fundamental value

Using time requires software modification > new layers must be written

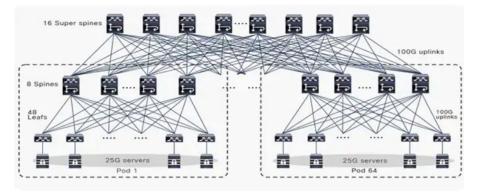


"If I had asked people **what they wanted**, they would have said **faster horses**." - Henry Ford (?)

SAFRAN

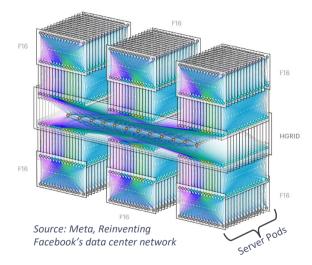
3 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way

Bringing High Accuracy To Applications



4 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way

Reference Architechtures


1. Cisco 3-levels leaf/spine

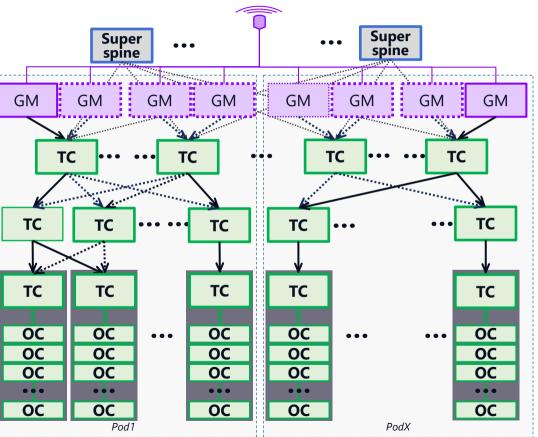
Source: Cisco, Massively scalable data center network fabric

- 1 building
- 16 superspines
- 64 pods \rightarrow 48 x racks/pod
- ~140K server/DC

2. Meta DC-Fabric (F16)

- 1 Region \rightarrow 6 buildings (F16)
- 16 fabric planes
- 48 pods → 48 x racks/pod
- ~100K servers/DC \rightarrow ~600K servers/region

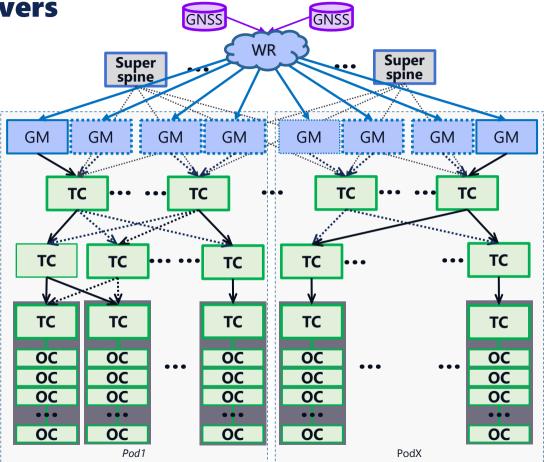
5 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way



Reference POD Architecture for DC Profile

4x Open Time Servers with ART+NIC cards (GM) per pods

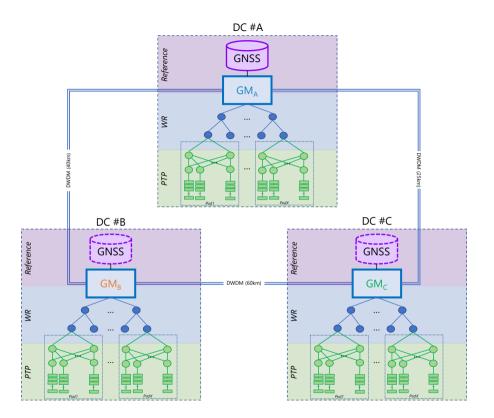
- Simple solution to put in place
 - Reduce the number of hops
 - > GM handles between 5-15K clients
- Many GNSS receivers to handle
 - > Complex RF installation: Splitter, Amplifiers
 - Many references can diverge ±100ns + calibration issues


6 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way

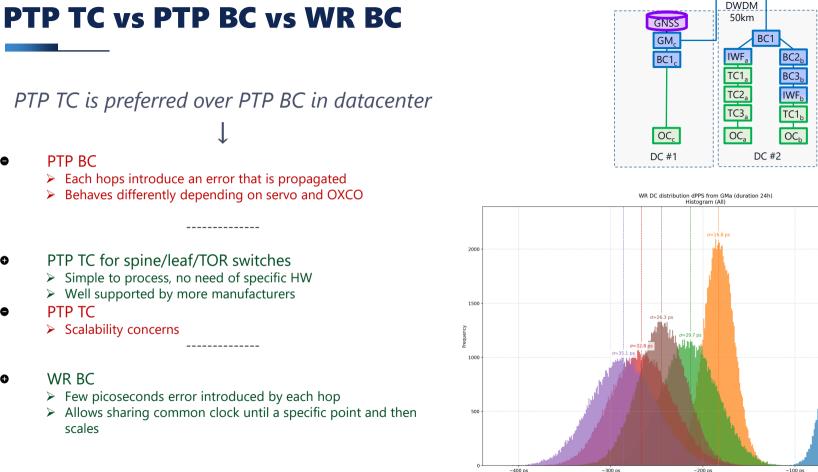
White Rabbit for Time Servers

Using WR at the core of DC to synchronize all PTP GM (Open Time Server) at each pods

- Simple solution to put in place
 - Reduce the number of hops
 - > GM handles between 5-15K clients
- Sharing a common clock (<1ns accuracy)
 - > Linked clocks increase resiliency and accuracy
 - Solution for intra-DC and inter-DC
 - > Only 1 or 2 GNSS receivers to install
 - > Relative accuracy is reduced by ±100ns


7 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way

Inter Datacenters Triangles


- Multiple GNSS compared through WR links
- Voting mechanism to select the most reliable reference
- Metro-area connection using DWDM links

Check our poster on resilient²PNT for more details

8 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way

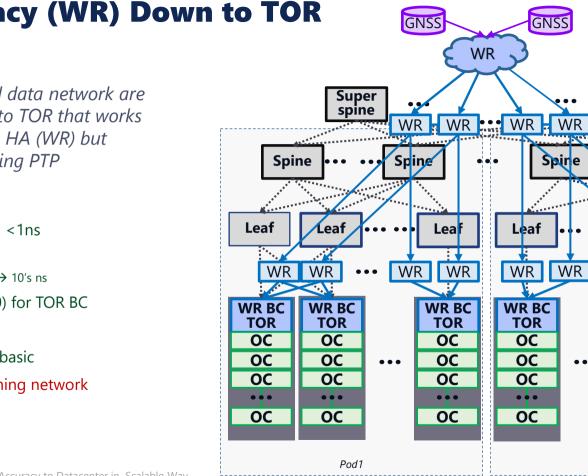
PTP TC is preferred over PTP BC in datacenter

- PTP BC
 - > Each hops introduce an error that is propagated
 - Behaves differently depending on servo and OXCO \geq

- PTP TC for spine/leaf/TOR switches 0
 - > Simple to process, no need of specific HW
 - > Well supported by more manufacturers
- PTP TC
 - Scalability concerns
- WR BC
 - > Few picoseconds error introduced by each hop
 - > Allows sharing common clock until a specific point and then scales

WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way 9

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran



BC10

BC1 BC2

BC3b IWE DA/E-

σ=15.7 ps

Super

spine

...

PodX

Spine

WR

...

Leaf

WR

WR BC

TOR

00

OC

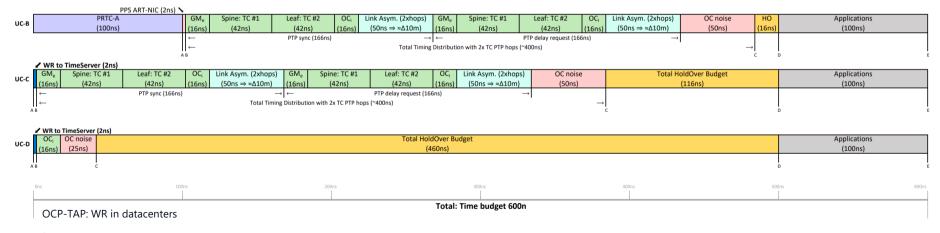
00

. . .

OC

SAFRAN

High Accuracy (WR) Down to TOR

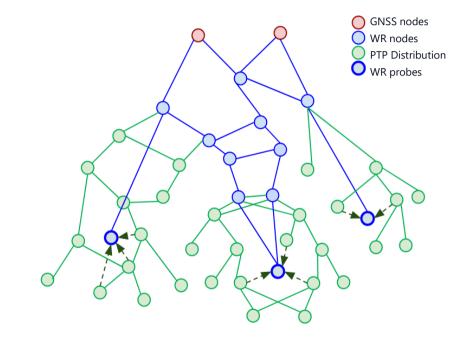

Timing network and data network are independent down to TOR that works as BC receiving HA (WR) but transmitting PTP

- Accuracy @ TOR BC <1ns</p>
- Only 1 hops PTP
 - > Accuracy @ OC Server \rightarrow 10's ns
- Few PTP clients (<50) for TOR BC</p>
- Resilient solution
- OC NIC can be very basic
- Adding a parallel timing network

10 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way

Time Budget Optimization

- Improving accuracy for timing distribution increases holdover budget and thus to enhance resiliency
- Through WR a common clock is shared among the DC and thus it allows to:
 - Remove PTRC-A time-error.
 - Dedicate Holdover budget to final OC node


11 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way

Supervision Network

Using **WR as ground-truth** to monitor the timing distribution PTP DC Profile

- A well-tested, reliable and deterministic subnanosecond accuracy allows one to properly monitor other timing distribution systems. Otherwise, a timing distribution network could be degraded without knowing it.
- Inserting distributed "WR probes" at strategic points allows one to measure the timing performance of "PTP distribution" network in realtime and act in case of unexpected behaviour.

12 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way

Linking GNSS

The accuracy of WR allows to connect and compare GNSS receiver between them to detect abnormal behaviour. It also reduces the number of GMs.

Increase Holdover budget

By consuming negligible timingbudget with WR and reducing the number of PTP hops, the reliability is increased thanks to longer holdover budget.

Supervision Network

Real-time multi-source timing comparison benefiting from the accuracy of WR. It allows to improved traceability and resiliency.

Future proof solution

Targeting ultra-accurate & reliable timing allows to prepare for future applications needing smaller but still undefined error-bound (ε).

13 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way

POWERED BY TRUST

14 WSTS 2023 – Bringing High-Accuracy to Datacenter in Scalable Way

