Femtosecond precision optical frequency and timing distribution systems

<u>K. Şafak</u>, A. Dai, M. Hagemann, M. Rückmann, D. Petters & F. X. Kärtner

Workshop on Synchronization and Timing Systems (WSTS)

13 – 16 March 2023 – Vancouver, Canada

Ultrafast photography Synchronized flash and shutter within few milliseconds

1964, photograph by Dr. Harold Edgerton, MIT.

Ultrafast charge migration in amino acids² DNA mutation in response to X-ray radiation

F. Calegari et al., Science, vol. 346, pp. 336-339, 2014.

Synchronized femtosecond lasers reveal the unknown properties of the DNA mutation.

X-ray free electron lasers have the most challenging timing distribution and synchronization requirements.

Large laser interferometers: LIGO Area: Gravitational-wave detection Required precision: < 1µs

B. P. Abbott et al., Rep. Prog. Phys, vol. 72, no. 076901, pp. 1-25, 2009.

Radio telescope networks: ALMA Area: Sensitive imaging of dark regions in the universe Required precision: <1 ps

A. Wootten and A. R. Thompson, Proceedings of the IEEE, vol. 97, no. 8, 2009.

X-ray free-electron lasers: European XFEL Area: Ultrafast molecular imaging Required precision: <1 fs

T. Sato et al., Optica, vol. 7, no. 6, pp. 716-717, 2020.

The solution is to devise a pulsed timing distribution network with subfemtosecond precision.

Outline:

- 1. High precision timing detectors
- 2. Lower noise photonic oscillators
- 3. Highly stable timing distribution via fibers

Electronic phase detection.

Electronics cannot detect femtosecond fluctuations.

Parameter	Electronic detection	
Sensitivity	> 1 µV / fs	
Jitter above 1 Hz	> 100 fs RMS	
Drift below 1 Hz	> 500 fs RMS	

J. M. Glownia et al., Opt. Express, vol. 18, pp. 17620–17630, 2010.

Optical crosscorrelation.

Pulsed optical timing detection enables subfemtosecond synchronization.

Parameter	Electronic detection	Pulsed-optical detection
Sensitivity	> 1 µV / fs	> 1000 µV / fs
Jitter above 1 Hz	> 100 fs RMS	< 1 fs RMS
Drift below 1 Hz	> 500 fs RMS	< 1 fs RMS

Electronic phase detector

VS.

Balanced optical cross-correlator (BOC)

Electronic phase detector

VS.

Balanced optical cross-correlator (BOC)

2. Photonic oscillators:

State-of-the-art photonic oscillators:

- Opto-electronic oscillator (CW laser)

- Comb-based photonic microwave oscillator

Cycle

Opto-electronic oscillator

https://www.high-tech.co.jp/list/wp-content/uploads/HI-Q-Compact-OEO.pdf

- Based on a stabilized monochromatic laser.
- Long fiber path serves as the reference for stabilizing the oscillator.
- Handbook size

•

Comb-based photonic oscillator

Optics Letters, Vol. 45, No. 5 / 1 March 2020.

- Based on optical frequency division with a stabilized femtosecond laser
- An "ultra-stable" vacuum based cavity serves as the reference for stabilizing the oscillator.
- Half 19" rack size

https://www.menlosystems.com/ products/ultrastable-microwaves/pmwg-1500/

2. Photonic oscillators:

PRESTO:

Photonically Reference Extremely STable Oscillator

- Pulse repetition rate is locked to the delayed optical pulse train.
- The long fiber delay serves as the reference for the stabilization.
- The timing jitter is measured with highly sensitive BOCs
- First demonstration experiment:

• Cycle Patent pending: EP 21 17 1191 & US 17/731 233

2. Photonic oscillators:

Timing jitter of the laser is highly suppressed within the lock bandwidth (~10 kHz) from 2 ps down to 20 fs RMS. Noise from 1 kHz to 20 kHz can be improved with better intracavity PZT of the laser.

Cycle

Phase noise at 10.83 GHz

	Laser free running	OEO	PRESTO	OFD
Freq. (Hz)	(dBc/Hz)	(dBc/Hz)	(dBc/Hz)	(dBc/Hz)
10	-27	-45	-71	-95
100	-73	-83	-93	-110
1k	-101	-115	-109	-130
10 k	-125	-138	-125	-140
100 k	-170	-140	-161	-150
1 M	-190	-153	-190	-150

3. Timing distribution:

We detect the round-trip fiber noise and build a feedback loop on an optical variable delay element in the link.

3. Timing distribution:

Due to high timing sensitivity and robustness against environmental fluctuations of the optical crosscorrelation, we can achieve timing distribution with daily sub-femtosecond precision.

M. Xin et al., Light Sci. Appl., vol. 6, no. e16187, 2017.

Achieved milestones:

<u>2017</u>: first system installed

2019: Delivery of a timing system for an X-ray laser

2022: Delivery of an optical timing system for a deep space antenna

Cycle

The view expressed herein can in no way be taken to reflect

the official opinion of the European Space Agency

Thank you!

Acknowledgements:

cle

00000		
	IN.	
J.		

Prof. Franz X. Kaertner

Cycle GmbH	DESY	MIT	AdvR
Anan Dai	Ming Xin	Michael Y. Peng	Philip Battle
Haynes Chang	Erwin Cano	Patrick Callahan	Tony Roberts
	Wenting Wang		