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Synchronized 
femtosecond 
lasers reveal the 
unknown 
properties of the 
DNA mutation. Amine group

Ultrafast charge migration in amino acids2

DNA mutation in response to X-ray radiation
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1964, photograph by Dr. Harold Edgerton, MIT.

Ultrafast photography
Synchronized flash and shutter within few milliseconds

F. Calegari et al., Science, vol. 346, pp. 336-339, 2014. 



X-ray free 
electron lasers 
have the most 
challenging 
timing 
distribution and
synchronization 
requirements. 

X-ray free-electron lasers: European XFEL
Area: Ultrafast molecular imaging
Required precision: <1 fs

Large laser interferometers: LIGO
Area: Gravitational-wave detection
Required precision: < 1µs

Radio telescope networks: ALMA
Area: Sensitive imaging of dark regions in 
the universe 
Required precision: <1 ps
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B. P. Abbott et al., Rep. Prog. Phys, vol. 72, no. 076901, pp. 1-25, 2009.

A. Wootten and A. R. Thompson,  Proceedings of the IEEE, vol. 97, no. 8, 2009.

T. Sato et al., Optica, vol. 7, no. 6, pp. 716-717, 2020.



The solution is to 
devise a pulsed 
timing 
distribution 
network with 
sub-
femtosecond 
precision.
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Outline:

1. High precision timing detectors

2. Lower noise photonic oscillators

3. Highly stable timing distribution via fibers



Electronic phase 
detection.

Electronics
cannot detect 
femtosecond 
fluctuations.
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Sensitivity > 1 µV / fs

Jitter above 1 Hz > 100 fs RMS
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1. Timing detectors:

J. M. Glownia et al., Opt. Express, vol. 18, pp. 17620–17630, 2010.



One pass

Crystal

Splitter

PD1Optical cross-
correlation.

Pulsed optical 
timing detection 
enables sub-
femtosecond 
synchronization.
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Parameter Electronic detection

Sensitivity > 1 µV / fs

Jitter above 1 Hz > 100 fs RMS

Drift below 1 Hz > 500 fs RMS

1. Timing detectors:

T. R. Schibli et al., Opt. Lett., vol. 28, no. 11, pp. 947-949, 2003. 



Electronic phase 
detector
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Balanced optical 
cross-correlator 
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1. Timing detectors:



Electronic phase 
detector

vs. 

Balanced optical 
cross-correlator 
(BOC)
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1. Timing detectors:



State-of-the-art 
photonic 
oscillators:

- Opto-electronic 
oscillator (CW laser)

- Comb-based 
photonic 
microwave 
oscillator

Opto-electronic oscillator

Quelle: https://en.wikipedia.org/wiki/Opto-electronic_oscillator

https://www.high-tech.co.jp/list/wp-content/uploads/HI-
Q-Compact-OEO.pdf

• Based on a stabilized monochromatic 
laser.

• Long fiber path serves as the 
reference for stabilizing the oscillator.

• Handbook size

• Based on optical frequency 
division with a stabilized 
femtosecond laser

• An “ultra-stable” vacuum based 
cavity serves as the reference for 
stabilizing the oscillator.

• Half 19” rack size 

Optics Letters, Vol. 45, No. 5 / 1 March 2020. 

https://www.menlosystems.com/
products/ultrastable-microwaves/pmwg-
1500/

2. Photonic oscillators:
Comb-based photonic oscillator

https://en.wikipedia.org/wiki/Opto-electronic_oscillator
https://www.high-tech.co.jp/list/wp-content/uploads/HI-Q-Compact-OEO.pdf
https://www.high-tech.co.jp/list/wp-content/uploads/HI-Q-Compact-OEO.pdf
https://www.menlosystems.com/products/ultrastable-microwaves/pmwg-1500/
https://www.menlosystems.com/products/ultrastable-microwaves/pmwg-1500/
https://www.menlosystems.com/products/ultrastable-microwaves/pmwg-1500/


PRESTO:

Photonically 
Reference 
Extremely 
STable
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• Pulse repetition rate is locked to the delayed optical pulse train.

• The long fiber delay serves as the reference for the stabilization.

• The timing jitter is measured with highly sensitive BOCs

• First demonstration experiment: 

2. Photonic oscillators:

Patent pending: EP 21 17 1191 & US 17/731 233



Timing jitter of the 
laser is highly 
suppressed within the 
lock bandwidth (~10 
kHz) from 2 ps down 
to 20 fs RMS. 
Noise from 1 kHz to 
20 kHz can be 
improved with better 
intracavity PZT of the 
laser.

Freq. (Hz)
Laser free running 
(dBc/Hz)

OEO
(dBc/Hz)

PRESTO
(dBc/Hz)

OFD 
(dBc/Hz)

10 -27 -45 -71 -95
100 -73 -83 -93 -110

1k -101 -115 -109 -130
10 k -125 -138 -125 -140

100 k -170 -140 -161 -150
1 M -190 -153 -190 -150

2. Photonic oscillators:

Phase noise at 10.83 GHz

Limited by PZT resonance

Noise overshoot due to feedback



We detect the 
round-trip fiber 
noise and build a 
feedback loop on 
an optical variable 
delay element in 
the link.
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3. Timing distribution:



Master
laser

 Fiber link 1 
(3.5 km)

RF-SBOC1 BOC2

PLL

Fiber link 2 
(1.2 km)

Due to high timing 
sensitivity and 
robustness against 
environmental 
fluctuations of the 
optical cross-
correlation, we can 
achieve timing 
distribution with daily 
sub-femtosecond 
precision.
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3. Timing distribution:
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Out-of-loop timing error: 200 as RMS

M. Xin et al., Light Sci. Appl., vol. 6, no. e16187, 2017. 



Achieved milestones:

2017: first system 
installed

2019: Delivery of a 
timing system for an X-
ray laser

2022: Delivery of an 
optical timing system 
for a deep space 
antenna
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Dalian China, 2017 Stanford USA, 2019 ESTRACK ESA, 2020 – 2025

The view expressed herein can in no way be taken to reflect 
the official opinion of the European Space Agency.
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Thank you!
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