ALKALI METAL VAPOR CELLS FILLED WITH MICROFABRICATED ON-CHIP DISPENSING COMPONENT

Yoshikazu HIRAI¹, Shun KIYOSE¹, and Osamu TABATA²

¹Kyoto University, Kyoto, JAPAN and ²Kyoto University of Advanced Science, Kyoto, JAPAN

Cs

2 mm

CORE TECHNOLOGY

https://doi.org/10.35848/1347-4065/abe203

Wafer-level fabrication of atomic clock's vapor cells filled with alkali metal

- 1. Vapor cell structure utilizes a single-mask process with typical wafer-level Silicon (Si) fabrication
- 2. Microfabricated Si grooves with multiple re-entrant structures are used for efficient (e.g., short time, low temperature) Cs production from cesium azide (CsN₃)
- 3. Cs is filled into a cell by thermal heating at 330 °C for 10 min, and the stability of the Cesium (Cs) atomic density with the optical measurements has been confirmed over a period of 2 years

Making progress on miniaturized atomic clocks for future applications

- New applications and technologies: 6G (Beyond 5G) networks and GPS alternatives will require precise timekeeping on portable platforms, driving a demand for miniaturized atomic clocks with a low-cost and high performance
- Key component: Microfabricated vapor cells contain alkali metal and buffer gas . and are typically fabricated by sandwiching the Si wafer between two glasses

- Cs-dispenser : Microstructure to decompose CsN₃
 - Pipetting cavity : Trough hole for pipetting CsN3 solution
- Optical cavity : Optical path for CPT resonance
- Don't you need a low-cost, mass production manufacturing technology?

FABRICATION PROCESS PCT/JP2021/039690 (1) Cr patterning for DRIE (2) Single-step DRIE

Si (t = 1.5 mm)

(3) 1st anodic bonding

glass (t = 0.3 mm)

A) Wafer-level process: Suitable for the vapor cell manufacturing

- All equipment and process are general Si fabrication for micro-structuring applications
- Si structures in the cell are fabricated by the one-step Si-dry etching process
- Cs production process is only by thermal heating

.

Sample: 4-inch wafer

B) Low temperature and Short time process

- CsN₃ is successfully decomposed when the cells are activated by heating at 330 °C for 10 min
- Micro-size re-entrant structures promote thermal decomposition • and enable effective Cs production at low temperatures
- Use of a Si structure for Cs dispensing and a low-temperature bonding process can reduce oxygen (O₂) and water (H₂O) preventing Cs oxidation

Cs source	Cesium dispenser (Cs ₂ CrO ₄ /Zr/Al)		Cesium azide (CsN ₃)			
Method	Laser activation		Heating on glass	UV irradiation	Heating w/ 3D Si microstructures	
	FEMTO-ST ^[1]	NIST ^[2] , FEMTO-ST ^[3]	CSEM ^[4]	NIST ^[5]	Kyoto Univ.	
Cs Buffer gas	Glass Si O Dispenser pill	Laser Cut off Dispenser pill / BaN ₆ +CsCl	CsN ₃ SSSS Heat	UV light	CsN ₃ + 3D microstru	cture
Typical size	6 mm × 4 mm	3.7 mm × 3.7 mm	4 mm × 4 mm	4 mm × 4 mm	8 mm × 8 mm	[On-going] 4 mm × 4 mm
Cs production efficiency	several sec/cell	several sec/cell	> 650 °C	> 24 hours	330 °C, 10 min. (wafer-level process)	
Yield	+	+			++	
Frequency stability	+	+		++	++ (Expected)	

M. Hasegawa et al., J. Micromech. Microeng. 23, 055022 (2013)
D. G. Bopp et al., J. Phys. Photonics 3, 015002 (2021)
V. Maurice et al., IEEE IFCS-EFTF (Apr. 2022, 5121
V. Overstoiz et al., IEEE MEMS (Jan. 2014), pp.552-555
L. Liew et al., Appl. Phys. Lett A4, 2694 (2004)

Synchronization and Timing Systems 2023 | March 13-16, 2023 | Vancouver, BC, CANADA

Microchannels : Filling Cs vapor and N2 into the optical cavity