
How It Works How It Performs

A New Approach to IEEE1588
Applying a Client/Server Model to Unicast PTP as an Alternative to NTP

Designed to improve efficiency while reducing complexity, this new approach to IEEE1588 modifies unicast PTP to enable it to adopt a client/server model,
while maintaining—or even improving on—the achievable synchronization accuracy by combining the hardware timestamping capabilities of PTP with
certain aspects of the clock filtering, selection, and combining algorithms provided by NTP.

The client/server-based communication flow of this new concept allows it to adopt established security technologies such as NTS (Network Time Security)
ordinarily used for NTP for the purpose of authenticating PTP messages exchanged between clients and servers—potentially a game changer when it
comes to PTP traffic security.

Meinberg Funkuhren GmbH & Co. KG
Lange Wand 9

31812 Bad Pyrmont
Germany

Thomas Behn
Senior Software Engineer
Phone: +49 (0)5281 9039-438 Email: thomas.behn@meinberg.de

v Improve Efficiency v Reduce Complexity v Enhance Security v Maintain Accuracy

Client Server

t1

t2

Sync [+TLV]

t3

t4

Sync [+TLV]

Follow Up [+TLV]

Follow Up [+TLV]

Sync Request

The client sends Sync and Follow Up Messages
(assuming that Two-Step mode is running) with
a Request TLV attached to either of them.

t1 Sync Message egress timestamp (Client)
t2 Sync Message ingress timestamp (Server)

Sync Response

Upon receipt of a complete Sync Request
sequence, the server responds with Sync and
Follow Up Messages (again, assuming Two-
Step mode) with a Response TLV attached to
the same message as in the Request sequence.

t3 Sync Message egress timestamp (Server)
t4 Sync Message ingress timestamp (Client)

Field Octets TLV Offset Value

tlvType 2 0 3 (ORG_EXT)

lengthField 2 2 36+N

organizationId 3 4 0xEC4670

organizationSubType 3 7 0x526571

flags 4 10 ...

pad 22+N 14 0

Field Octets TLV Offset Value

tlvType 2 0 3 (ORG_EXT)

lengthField 2 2 36+N

organizationId 3 4 0xEC4670

organizationSubType 3 7 0x526573

flags 4 10 ...

error 2 14 ...

reqIngressTimestamp 10 16 ...

reqCorrectionField 8 26 ...

utcOffset 2 34 ...

bmcaComparisonDS 0+N 36 ...

Request TLV

Response TLV

Field Value

majorSdoId messageType 0 see IEEE1588

minorVersionPTP versionPTP 1 2

messageLength see IEEE1588

domainNumber 0

minorSdoId 0

flagField see IEEE1588

correctionField 0

messageTypeSpecific 0

sourcePortIdentity see IEEE1588

sequenceId see IEEE1588

controlField see IEEE1588

logMessageInterval Req.: Interval (log2), Resp.: 0x7f

PTP Message Header

Mean Path Delay
(t2 - t1 + t4 - t3) / 2

Offset
(t2 + t3 – t1 - t4) / 2

192.168.200.1/24
ec46:7000:200::1/64

PC Engines APU.2E4
Client SBC (C1)

PC Engines APU.2E4
Server SBCs (S1+S2)

HP 1810-24G Switch

192.168.10.2/24
ec46:7000:20::2/64

192.168.10.1/24
ec46:7000:20::1/64

Ubuntu Router (R1)

NetTimeLogic
PPS Analyzer

GNSS Synchronized
1-PPS Reference Clock

1-PPS Reference
1-PPS Measurement
Routed Network Connection
Direct (L2) Network Connection

Test Setup

In the test setup, we used
three PC Engines APU.2E4
SBCs as DUTs: one as a
client (C1) and two as
servers (S1+S2). These SBCs
have three Intel i210-AT
NICs, each with its own PTP
hardware clock (PHC).

A laptop running Ubuntu
Linux acted as a software
router (R1) between the
client and servers.

The servers and the PPS
analyzer board provided by
NetTimeLogic GmbH shared
a GNSS synchronized 1-PPS
reference clock.

ptp4l flashptpd

In each of our test scenarios, we ran both ptp4l and flashptpd for at least 3600 seconds (1 hour),
one after the other, before comparing the measurements, see results below.

Try it out!
Our reference implementation flashptpd used for the
presented test scenarios and measurements is free

and open-source (MIT License).

Please feel free to download, test, or contribute:

https://github.com/thomas-behn/flashptpd

2) Routed Connection - 30 to 750µs Delay, up to 300µs Jitter
While ptp4l kept the PHC within around +/-60µs (even with high message rates and small PI proportional and integral constants),

flashptpd adjusted the PHC to a pretty stable offset of -5 to +3µs.

+/-10µs scale

1) Direct (L2) Connection – Small Delay, No Jitter
Both ptp4l as well as flashptpd adjusted the PHC to a very stable and small offset of -8 to +24ns.

3) Routed Connection – 40 to 75ms Delay, up to 20ms Jitter
When emulating the properties of a WAN by adding delay and jitter, ptp4l kept the PHC roughly within -2 and +2.8ms,

while flashptpd was able to stay well within +/-1ms.

+/-1ms scale

