# IEEE P1952 – Resilient Positioning, Navigation and Timing User Equipment Working Group

Doug Arnold, Meinberg USA Shelby Savage, MITRE Stephen Guendert, IBM

WSTS 2023

## Agenda

- Critical infrastructure and GNSS
- IEEE 1952 project scope and purpose
- Process and organization
- Position, navigation and timing user equipment
- Use cases
- Threats, hazards and disruptions to PNT user equipment
- Resilience levels
- For further information

### **Critical Infrastructure currently dependent on GNSS**

- Power Grid
- Telecommunications
- Finance
- Transportation
- Manufacturing
- Defense
- Broadcast-media



# **GNSS jamming and Spoofing**

- Jamming devices
  - Used by professional drivers and vehicle thieves to avoid tracking
  - Can be purchased online for as little as \$10
- Easy to do with software defined radios
  - SDR unit be purchased online for about \$300
  - Free open source GPS spoofing software available at github





# IEEE P1952 project

- Resilient Positioning, Navigation and Timing User Equipment Working Group
- Project to create an IEEE standard
  - Standard for Resilient Positioning, Navigation and Timing User Equipment

### • In Scope

- Requirements on behaviors of PNT User Equipment
- Defines levels of resilience for PNT UE

### • Out of scope

- Requirements on PNT source systems (e.g. GPS)
- UE design to achieve resilience levels

#### **IEEE SA** STANDARDS ASSOCIATION

## **Vision for helping industry**



### **IEEE standards process**



# **IEEE P1952 Organizers**

#### Officers

Chair: Shelby Savage (MITRE)

Vice Chair: Steve Guendert (IBM)

Secretary: Patricia Larkoski (MITRE)

- Meeting schedule and minutes,
- Working group voting rights tracking

Program manager: Jennifer Santulli (IEEE SA)

• Knowledge resource for WG on IEEE process and rules

#### Editor: Doug Arnold (Meinberg USA)

- Add contributions into IEEE template
- Organize comment resolution

#### Subgroups

#### Use Cases

- Chair: David Sohn (Orolia)
- Threats, Hazards and Disruptions
  - Co-chair: Marc Weiss (Consultant, formerly NIST)
  - Co-Chair: Pat Diamond (Consultant, formerly Semtech)

Resilience Levels

• Chair: Cristina Siebert (NextNav)

System Engineering

 Co-Chairs: Magnus Danielson (Net Insight), Mitch Narins (Strategic Synergies)

### **PNT User Equipment**



### **Use Cases**

| Chemical Sector                  | Commercial<br>Facilities Sector                     | Communications<br>Sector         | Critical<br>Manufacturing<br>Sector       |
|----------------------------------|-----------------------------------------------------|----------------------------------|-------------------------------------------|
| Dams Sector                      | Defense Industrial<br>Base Sector                   | Emergency<br>Services Sector     | Energy Sector                             |
| Financial Services<br>Sector     | Food and<br>Agriculture Sector                      | Government<br>Facilities Sector  | Healthcare and<br>Public Health<br>Sector |
| Information<br>Technology Sector | Nuclear Reactors,<br>Materials, and<br>Waste Sector | Transportation<br>Systems Sector | Water and<br>Wastewater<br>Systems Sector |

Under discussion: Do we need a precise positioning use case?

## **Threats, Hazards and Disruptions**

- Threats are accidental, unintentional or malicious
  - For example: GNSS spoofing
- Hazards are accidental or unintentional
  - Sub-category of threats
  - For example: effects of weather
  - For example: unintentional RF interference
- Disruptions are caused by threats
  - PNT User equipment unable to meet the requirements of the use case
- Goal of subgroup is to identify categories of threats that cause disruptions in PNT operation
  - Not to identify all possible threats
  - Limit the number of tests needed to prove resilience

### **Resilience Levels**

- Based on broad definition of resilience, including:
  - Robustness
  - Integrity
  - Assurance
- Ability to withstand threats and hazards or recover from them
- PNT systems for critical infrastructure will likely need to meet higher levels of resilience
- Lower resilience levels can be useful for subsystems
  - For example, multiple lower resilient subsystems managed by a PNT source selector can achieve a higher resilience level than that of any of the subsystems

## **Resilience Levels**

### Concepts under discussion for resilience levels

- Ability to check all PNT input data for compliance with PNT source specifications
  - For example: some GPS receivers rejected 13  $\mu$ s error in 2016
- Ability to detect PNT input jamming and spoofing
- Ability to resist PNT input jamming and spoofing
- Ability to maintain minimum PNT performance for a specified time interval
  - For example: oscillator holdover
  - For example: integrating accelerometer
- Ability to maintain minimum PNT performance indefinitely during threat
  - For example: using diversity of PTP sources
- Ability to verify PNT input accuracy by comparison to other PNT sources
  - For example: voting algorithms

## Systems engineering Subgroup

- New subgroup just getting organized
- Expected outputs of the subgroup could include:
  - List suggested metrical variables relevant (like availability, continuity, etc.) to each resilience level
  - Assessment of resilience level requirements produced by the RLD subgroup for evaluability within the THD Subgroup's threat model
  - From high-level requirements established in the RLD subgroup, derive example lowlevel requirements for key use cases
  - Informational material recommending how regulators may use the P1952 standard

### To find out more or become involved

<u>https://sagroups.ieee.org/p1952/</u> Contains: email addresses of officers upcoming meetings