

Precise Time Using Broadcast Positioning System (BPS)

Tariq Mondal NAB

What is BPS?

A system and method of estimating time and position at a receiver using Next Gen TV broadcast signals

Compliant with Next Gen TV (ATSC 3.0) standard currently being deployed in the US

Independent and stand-alone

• GPS, Internet or cellular connectivity not required

MILLIN

PNT Capability

One TV tower can provide accurate time at a known position

• 100 ns, 95% of the time

Four TV towers can provide both time and position estimation

• 100 m average accuracy expected

ATSC 3.0 Standard – Next Gen TV

High Power with Frequency Diversity

439 VHF stations, up to 185 KW

1171 stations, up to 1000 KW

ALL HIS

BPS Coverage at Full Deployment

Average signal reception:

- 17 towers at 1.5 m antenna height
- 70 towers at 50m antenna height

At demodulation threshold (-5 dB SINR) Threshold + 10 dB Threshold + 20 dB

- Coverage at 1.5 m antenna height

Redundant Timing Sources

Increasing Resiliency and Accuracy

Report emission time and location of neighboring stations

Report timestamping errors of previous frames

Use Cases

Deliver GPS-independent time

Deliver GPS-independent position and time

Detect GPS spoofing

GPS-BPS hybrid location, DGPS/RTK, A-GPS Assistance data

ATSC 3.0 Frame

Source: atsc.org

Time Delivery in ATSC 3.0 Standard

Source: atsc.org

ATSC 3.0 Transmission Chain

Source: atsc.org

ALL HIS

Time Synchronization at the Transmitter

ALL HIS

Proof of Concept – Funded by NAB

ALLEI

ATSC 3.0 Testbed at NAB 1M Lab

ALL HIS

BPS Prototype at NAB 1M Lab

Timing Performance

19

ALLEL

Lessons Learned

Transmission time can be synchronized within 25-50 ns of reference time

Most of the existing infrastructure can be reused

Some ATSC 3.0 modules will need hardware and software modification

Upgrade HW and SW for better accuracy

Deploy BPS at a transmission facility in a live market

Demonstrate timing use case at a known location

21

Thank You

ALL HIS

BACKUP SLIDES

ALL HIS

Coverage Assumptions

System threshold -5 dB SNR (Data PLP is the weakest link)

Longley–Rice propagation model is used

Parameter	Value	Unit
System Bandwidth	6	MHz
Thermal Noise (kTB)	-106.2	dBm
Frequency of Operation	539	MHz
Antenna Gain	0	dBi
Antenna Factor	-129.6	dBm-dBµV/m
Noise Figure	6	dB
Required Field Strength	24.4	dBµV/m
RX Antenna height, AGL	1.5	m
Location, Time Variability	50%, 50%	-

Pseudorange Multilateration Concept

Pseudorange equations:

$$r_{1} = \sqrt{(x_{1} - x)^{2} + (y_{1} - y)^{2}} + ct$$

$$r_{2} = \sqrt{(x_{2} - x)^{2} + (y_{2} - y)^{2}} + ct$$

$$r_{3} = \sqrt{(x_{3} - x)^{2} + (y_{3} - y)^{2}} + ct$$

11111

Multilateration Iterative Solution

$$\Delta x = \begin{bmatrix} \Delta x \\ \Delta y \\ -c\Delta t \end{bmatrix} \qquad H = \begin{bmatrix} \frac{(x_1 - \hat{x})}{\sqrt{(x_1 - \hat{x})^2 + (y_1 - \hat{y})^2}} & \frac{(y_1 - \hat{y})}{\sqrt{(x_1 - \hat{x})^2 + (y_1 - \hat{y})^2}} & 1 \\ \frac{(x_2 - \hat{x})}{\sqrt{(x_2 - \hat{x})^2 + (y_2 - \hat{y})^2}} & \frac{(y_2 - \hat{y})}{\sqrt{(x_2 - \hat{x})^2 + (y_2 - \hat{y})^2}} & 1 \\ \frac{(x - \hat{x})}{\sqrt{(x_3 - \hat{x})^2 + (y_3 - \hat{y})^2}} & \frac{(y - \hat{y})}{\sqrt{(x_3 - \hat{x})^2 + (y_3 - \hat{y})^2}} & 1 \end{bmatrix} \qquad \Delta r = \begin{bmatrix} \Delta r_1 \\ \Delta r_2 \\ \Delta r_3 \end{bmatrix}$$

Least-square solution: $\Delta x = (H^T H)^{-1} H^T \Delta r$

Weighted least-square solution: $\Delta x = (H^T W H)^{-1} H^T W \Delta r$

where $W = \begin{bmatrix} w_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & w_n \end{bmatrix}$

26

Increasing Yield, Resiliency, and Accuracy

System threshold can be reduced to -9 dB SNR (preamble) if neighbor stations report all nearby neighbor antenna locations

System threshold can be reduced to -12 dB SNR (bootstrap) if neighbor stations report all neighbor antenna locations, timing, and frequency

Accuracies of previous fixes can be improved if timestamping error of the previous frame is sent on the next data frame

Recommended Neighbor Measurements

- Transmit antenna ID (a unique ID to distinguish the antenna)
- Transmit antenna position (latitude, longitude, and elevation)
- Transmit antenna radiated power
- Transmit antenna radiation pattern (and/or average coverage radius)
- Neighbor station antenna IDs
- Neighbor station channels (frequencies)
- Neighbor antenna positions (latitudes, longitudes, and elevations)
- Neighbor antenna radiated power levels
- Neighbor antenna radiation patterns
- Timing offset of the neighbor bootstrap signals relative to the self bootstrap signal
- Could either be the value observed at the self (transmitter) site or can be compensated for the distance travelled
- Current number of leap seconds expressed as TAI UTC
- To avoid decoding of A/331 video service messages for location computation
- Reported bootstrap transmission time of the previous frames (for both self and neighbors)
- Measured time-stamp reporting error of the previous frames (for both self and neighbors)

Avateq's 1st Gen Analyzer

ALL DE

Syntax	No. of bits	Format
bps_info(){		
message_length	16	unsigned integer
version	8	unsigned integer
timing_source_info(){		
sync_hierarchy	7	unsigned integer
num_independent_sources	6	unsigned integer
for (i=0;i< num_independent_sources;i++){		
source_type_list	4	unsigned integer
}		
expected_accuracy	16	unsigned integer
source_used	4	unsigned integer
}		
self_measurement_info(){	42	amount 7.0 bit unaintend internet
call_sign tx id	13	array of 7 6-bit unsigned integers unsigned integer
tx freq	32	32-bit floating point
geodetic_lat	64	64-bit double precision
geodetic_lon	64	64-bit double precision
geodetic_height	64	64-bit double precision
radiated_power	32	32-bit floating point
for (i=0;i<36;i++){		
antenna_pattern_relative_field	252	array of 36 7-bit unsigned integers
}		
max_gain_direction	10	unsigned integer
prev_bootstrap_time_sec	32	unsigned integer
prev_bootstrap_time_msec	10	unsigned integer
prev_bootstrap_time_usec	10	unsigned integer
prev_bootstrap_time_nsec	10	unsigned integer
prev_bootstrap_time_error_nsec	16	signed integer
}		1

leap_seconds	8	unsigned integer	
num neighbors	6	unsigned integer	
for (i=0;i <num_neighbors; i++){<="" td=""><td></td><td></td></num_neighbors;>			
neighbor_measurement_info(){			
call_sign	42	array of 7 6-bit unsigned integers	
tx_id	13	unsigned integer	
tx_freq	32	32-bit floating point	
geodetic_lat	64	64-bit double precision	
geodetic_lon	64	64-bit double precision	
geodetic_height	64	64-bit double precision	
radiated_power	32	32-bit floating point	
for (i=0;i<36;i++){			
antenna_pattern_relative_field	252	array of 36 7-bit unsigned integers	
}			
max_gain_direction	10	unsigned integer	
reported_bootstrap_time_sec	32	unsigned integer	
reported_bootstrap_time_msec	10	unsigned integer	
reported_bootstrap_time_usec	10	unsigned integer	
reported_bootstrap_time_nsec	10	unsigned integer	
bootstrap_toa_offset	32	signed integer	
prev_bootstrap_time_sec	32	unsigned integer	
prev_bootstrap_time_msec	10	unsigned integer	
prev_bootstrap_time_usec	10	unsigned integer	
prev_bootstrap_time_nsec	10	unsigned integer	
prev_bootstrap_time_error_nsec	16	signed integer	
}			
}			
reserved_bits	as needed		
bps_crc	32	unsigned integer	
}			

Next Step (2023-2024)

- Develop a loop receiver that measures time with 15 ns accuracy
- Implement API for additional selfmeasurement fields
- Develop a test receiver that demonstrates GPS and BPS time differences at known locations
- Develop timestamp calibration method and equipment for real transmission facilities
- Deploy BPS at a transmission facility in a live market
- Demonstrate timing use case at a known location

Development Phases

PEP: Example of Broadcaster-Gov't Partnership

U.S. PRIMARY ENTRY POINT (PEP) AM/FM RADIO STATIONS

PEP (Primary Entry Point) radio stations are battle-hardened commercial radio stations, usually in the medium wave (AM) band, that serve as initial entry points for national Emergency Alert System traffic in a national emergency. They must have a backup generator for 30 days on the air, along with various other stringent requirements, so in a widespread disaster situation they could be vital information sources if local infrastructure is down. There are currently 33 PEP stations in the US that are shown on the map. Given are frequency, station identifier, and closest large city location. Blue dots indicate FM stations, red dots AM stations.

Executive Order 13407 -Public Alert and Warning System

•

ALL DE

- FEMA Primary Entry Point (PEP) Stations
- ATSC 3.0 supports Emergency Alert System (EAS)

Government Support for Free-to-use Service

Develop public-private partnership

