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Atomic Frequency Standards:
Produce Frequency Locked to an Atomic Transition
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Basic Passive Atomic Clock

Obtain atoms to measure

Depopulate one hyperfine level

Radiate the state-selected sample with frequency v

Measure how many atoms change state

Correct v to maximize measured atoms in changed state




Block Diagram of Atomic Clock
Passive Standard

Frequency =v (e.g. 9,192,631,770Hz)
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Types of Commercial Atomic Clocks

 Cesium thermal beam standard

— Best long-term frequency stability

Rubidium cell standard

— Small size, low cost

Hydrogen maser

— Best stability at 1 to 10 days (short-term stability)
— Expensive several S100K
Chip Scale Atomic Clock (CSAC)

— Very small size, low power

Note that new clocks are under development!




Chip Scale Atomic Clock (CSAC)

e Cs or Rb miniature cell standard — not a Cs
beam tube!

* Coherent Population Trapping (CPT)

* Very small size and low power consumption,
but better performance than a quartz
oscillator
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Oscillator Comparison

InEEETETE Wristwatch, computer,
10® ~101! ~101! 107to 108 cell phone, household
Quartz, TCXO .
clock/applance,...
el Network sync, test
1 -8 ~ -12 ~ -12 -9 -11 3
Quartz, 0CXO 0 10 10 10°to 10 equipment, radar,
commes, nav,...
Wireless comms
Rb Oscillator ~107° ~1011 ~1013 101to 1013 infrastructure, lab
equipment, GPS, ...
Timekeeping, Navigation,
Cesium Beam ~10°13 ~1011 ~104 nil GPS, Science, Wireline
comms infrastructure,...
Hydrogen ~1Q11 ~1013 ~1015 1050 10°16 Timekeeping, Radio
Maser astronomy, Science, ...




Oscillator Comparison (continued)

Inexpensive _ 3 _ _ R _
Quartz, TCXO ~1cm ~10g ~10 mW ~ 10%s/year ~ $30-50
Hi-quality ~50 cm? ~500 ~10W ~10Ks/ ~$100
Quartz, OCXO =L cm =oUUE = = JURs/year FORREE
Rb Oscillator ~200cm3 ~500g ~10W ~ 10Ks/year ~ $1000s
Cesium Beam ~ 30,000 cm? ~20kg ~50W ~ 100s/year ~$10Ks

Hydrogen
~1md ~200kg ~100 W ~ 10s/year ~ $100Ks

Maser




Holding a Microsecond after Loss of Sync
(circa 2019)

Temperature Oven Chip Scale Rb Cs
Compensated | Controlled Atomic Oscillator | Beam-Tube
Crystal Crystal Clock (5E-12/mo. Oscillator
Oscillator Oscillator (CSAC) aging)
(TCXO) (OCXO0)
Range of [ 10 minutes — [ 1—24 hours | 3-15hours | 8 hours —3 | 10-300 days
times to hold 1 hour days
a
microsecond
Cost Range $5-20 $50-250 $1.5K-3K $500-1500 | $20K - $50K




Conclusions: Atomic Standards

* Rubidium, cesium, and hydrogen atomic frequency
standards share a common theme: the stabilization

of an electronic (quartz) oscillator with respect to an
atomic resonance.

Although the use of atoms brings with it new guantum
mechanical problems, the resulting long-term stability
IS unmatched by traditional classical oscillators.




Thanks for your attention!




