

OUTLINE

- What is O-RAN?
- O-RAN Overview
 - Functional Splits
 - Deployment
- Time Accuracy in eCPRI
 - Overview
 - O-RAN Synchronization Plane

Page 2

WHAT IS O-RAN

First, What Is RAN?

RAN = Radio Access Network

- It implements the radio access technology.
- Resides between the User Equipment (UE) and the Core Network (CN)

RAN history

- GRAN GSM Radio Access Network → 2G
 - TDMA, CDMA
- UTRAN = UMTS Radio Access Network → 3G
 - W-CDMA radio access technology
- E-UTRAN = Evolved UMTS Radio Access Network → 4G
 - MIMO, OFDM, Long Term Evolution (LTE) → 4G LTE
- O-RAN = Open Radio Access Network → 5G
 - MIMO, mmWave, ESA (Beam Forming)
 - Governed by IMT-2020 3GPP (3rd Generation Partnership)

Higher Speed Lower Latency

4G VERSUS 5G ARCHITECTURE

Evolved Packet Core (EPC) in 4G

BBU recovers sync from the

BBU implements IEEE 1588 and

· BBU implements Telecom Slave

Transport network implements
 Telecom Boundary clocks type A/B

Core Network Backhaul Network **EPC** CN Synchronization Backhaul Central Unit (CU) Backhaul (T-BC Class A/B) Baseband Unit (BBU) Midhaul Distributed Unit (DU) CPRI Fronthaul CPRI / **eCPRI**

Remote Radio Unit (RRU)

5G

Radio Unit (RU)

Core Network (CN) in 5G

 Transport network implements Telecom Boundary clocks type C/D

BBU in 5G:

- BBU is split in 2 nodes (CU and DU)
 - CU (optionally) and DU both implement IEEE 1588 and SyncE
 - CU (optionally) and DU both implement Telecom Boundary clock (T-BC)
 - DU needs to implement clock classes C or D depending on the Operator

RRU in 5G:

- RRU cannot recover sync from eCPRI signal alone
 - RU needs to implement IEEE 1588 and SyncE (IEEE 802.1CM TSN)
- Jitter performance is a key parameter for timing devices used in RRU

RRU in 4G:

BBU in 4G:

network

SyncE

clock (T-TSC)

- RRU recovers sync from CPRI signal alone
- Jitter performance is a key parameter for timing devices used in RRU

What is O-RAN?

- O-RAN (Open Radio Access Network)
 - Operator Led Alliance
 - Initially formed in 2018
 [ORAN Forum + CRAN (China Mobile initiative)]
- Use Standard Interfaces, Standard off-the-shelf Components,
 Standard functional splits, etc.
 - Maximize common-off-the-shelf Hardware, Merchant Silicon
 - Minimize Proprietary Hardware
 - Use of GPP's + SW ...
- Standardized Open Software and API
 - Specified API and Interface
 - Adoption through Standardization
 - Explore Open source where appropriate
- Driven for "open"ness
 - The interfaces are standardized
 - Operators can mix/match different component vendors for the CUs, DUs, or RUs.
 - The components are interoperable, protocols are clearly defined

ORAN Alliance following 3GPP and IMT-2020 for Open Network Architecture

"Mission is to re-shape the RAN industry towards more intelligent, open, virtualized and fully interoperable mobile networks."

O-RAN OVERVIEW

ARCHITECTURE & FUNCTIONAL SPLITS

FUNCTIONAL SPLITS – O-RAN SPECIFIC

VARIOUS DEPLOYMENT EXAMPLES*

Scenario B - Initial Priority Focus

The CU server/software co-located with the DU ... or hosted in a regional cloud data center.

Central RAN, with Fronthaul Switch

Split RAN, with Midhaul Switch

*Closer to Traditional 5G - Source: NGMN-2018

Source: Example based on TIP OpenRAN 5G NR BS Platform Requirements * eCPRI/RoE as well as CPRI support will be needed for coexistence/transition

TIME ACCURACY IN ECPRI

SPECIFICATIONS

5G DRIVES TIGHTER SYNCHRONIZATION REQUIREMENTS

The 3GPP time alignment error (TAE) (or relative time error (TE_R), as used in ITU-T terminology) represents the largest timing difference measured between any two elements of the cluster

- Both 4G and 5G targets are 3 μs (±1.5 μs to common reference, or PRTC)
- TAE down to 130 ns between clusters of RUs (i.e. ±65 ns from same DU)

O-RAN CUS-plane spec also defines two classes of O-DU:

- Class A has ±15 ppb frequency error limit
- Class B has ±5 ppb limit

Class level of accuracy	Maximum relative time error requirements (Note 1)	Typical applications (for information)
3A	5 μs	LTE MBSFN.
4A	3 μs	NR intra-band non-contiguous (FR1 only) and inter-band carrier aggregation; with or without MIMO or TX diversity.
бA	260 ns	LTE intra-band non-contiguous carrier aggregation with or without MIMO or TX diversity, and interband carrier aggregation with or without MIMO or TX diversity.
		NR intra-band contiguous (FR1 only) and Intra- band non-contiguous (FR2 only) carrier aggregation, with or without MIMO or TX diversity.
бB	130 ns	LTE intra-band contiguous carrier aggregation, with or without MIMO or TX diversity. NR (FR2) intra-band contiguous carrier aggregation, with or without MIMO or TX diversity.
6C (Note 2)	65 ns	LTE and NR MIMO or TX diversity transmissions, at each carrier frequency.

NOTE 1 – The maximum relative time error requirements represent the largest timing difference measured between any two elements of the cluster. See Appendix VII of [b-ITU-T G.8271.1] for illustration of how requirements are specified in a cluster. In 3GPP terminology this is equivalent to time alignment error (TAE).

NOTE 2 – Level 6C is an internal equipment specification, and does not result in a synchronization requirement on the transport network.

ITU-T G.8271 Table 2 - Time and phase requirements for cluster based synchronisation

Time Error Budgets

- The eCPRI specification sets time error (TE) budgets for the usr network interface (UNIT)
 - Allow for the time alignment error (TAE) requirements for four (4) categories of 3GPP features and RANs are met
 - Will focus on eCPRI timing accuracy categories A, B and C, and time synchronization deployment Cases 1.1 and 1.2
 - because these are most relevant to Open RAN applications
- Reference Points and Definitions for eCPRI Fronthaul Networks
 - The synchronization source could be a PRTC+T-GM, or DU that is directly or remotely synchronized by a PRTC.

O-RAN OVERVIEW

SYNCHRONIZATION PLANE

O-RAN S-PLANE

- Timing and Synchronization Plane
 - Using SyncE SSM & IEEE 1588 PTP packets
 - Relative time error between the O-DU and O-RU should be within a limit of 3μs (±1.5 μsec)
- Current Version on O-RAN specification assumes transport of PTP directly over L2 Ethernet (ITU-T G.8275.1 full timing on-path support)
 - transport of PTP over UDP/IP (ITU-T G.8275.2 partial timing support from the network) is also possible

Four (4) O-RAN synchronization topologies:

- Configuration LLS-C1: the O-DU is part of the synchronization chain towards the O-RU. Network timing is distributed from O-DU to O-RU via direct connection between O-DU site and O-RU site.
- Configuration LLS-C2: the O-DU is part of the synchronization chain towards the O-RU. Network timing is distributed from O-DU to O-RU between O-DU sites and O-RU sites. One or more Ethernet switches are allowed in the fronthaul network.
- Configuration LLS-C3: the O-DU is not part of the synchronization chain towards the O-RU. Network timing is distributed from PRTC/T-GM to O-RU typically between central sites (or aggregation sites) and O-RU sites. One or more Ethernet switches are allowed in the fronthaul network.
- Configuration LLS-C4: the synchronization reference is provided to the O-RU with no involvement of the transport network (typically with a local GNSS receiver).

How O-DU is synchronized is not in the scope of this classification of the synchronization topologies – but it cannot be ignored!!!

TOPOLOGIES

LLS-C1

LLS-C2

LLS-C3

LLS-C4

O-RAN SYNCHRONIZATION FOR O-DU

Configuration	Source	PLFS Master Toward Fronthaul	PTP Master Toward Fronthaul	Notes
LLS-C1	Local/Remote PRTC or PTP from Backhaul	Yes	Yes	Point to point path
LLS-C2	Local/Remote PRTC or PTP from Backhaul	Yes	Yes	Via 1 or more switches from O-DU to O-RU
LLS-C3	PTP/SyncE from Fronthaul	No	No	Via 1 or more switches from T-GM in network Uses ITU PTS (with SyncE) use case
LLS-C4	Local/Remote PRTC	No	No	No timing output from O-DU.

ORAN Terminology:

O-DU – open Distribution Unit, O-RU – open Radio Unit Fronthaul – The network between the O-DU and O-RU Backhaul – The network connecting the O-DU to the core network PLFS (Physical Layer Frequency Signals) – same as ITU-T SyncE SyncE DPLL is recommended for O-DU systems to cover all synchronization topologies.

Defined in O-RAN.WG4.CUS.0-v06.00 with performance requirements in Table 9-3, 9-4 and 9-5

O-RAN SYNCHRONIZATION FOR O-RU

Configuration	PLFS Input?	PTP Input?	Fronthaul Network Type	Notes
LLS-C1	Yes	Yes	FTS (with SyncE)	Point to point path
LLS-C2	Yes	Yes	FTS (with SyncE) or PTS	Via 1 or more aware switches
LLS-C3	Yes	Yes	FTS (with SyncE) or PTS	Via 1 or more switches from T-GM in network
LLS-C4	No	No	N/A	No timing input from RU from network

ORAN Terminology:

O-DU – open Distribution Unit, O-RU – open Radio Unit

Fronthaul – The network between the O-DU and O-RU

Backhaul – The network connecting the O-DU to the core network

PLFS (Physical Layer Frequency Signals) – same as ITU-T SyncE

Defined in O-RAN.WG4.CUS.0-v06.00 with performance requirements in Table 9-3, 9-4 and 9-5

Page 18

SyncE DPLL is recommended for O-DU systems to cover all synchronization topologies.

