Time Determination for Forensic Analysis of Multipoint Network Traces Taken Across Distributed Hybrid Cloud

Charles Barry

charles@luminouscyber.com

Apr 2022

Agenda

- Intro
- Overview
- Problem: Distributed Captures are not Synchronized
- Solution: Time Determination
- Experimental Setup
- Test Results
- Summary

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Award Number DE-SC-0021595.

Note: See also prior WSTS paper https://wsts.atis.org/wp-content/uploads/sites/9/2019/04/7 02-00 Luminous-Cybernetics Barry Time-

Distributed Hybrid Cloud Analytics

- Analytics Feature Requirements
 - Application Performance Monitoring
 - Network Performance Monitoring
 - Network Security
 - Root Cause Analysis
 - Real-Time Temporal and Spatial Visualization
 - Exploration of Historical data
- All of above need synchronized timestamps!

Problem: Lack of Synchronization in Hybrid Cloud

- Hybrid cloud analytics more important than ever, however:
 - Little conformance among providers {AWS, Azure, GCP, private};
 - NTP accuracy in the cloud is highly variable, no accuracy guarantees;
 - PTP is virtually non-existent, and cloud networks are PTP-Unaware.
 - NTP/PTP distribute time but provide no guarantee of timestamp accuracy
 - Event timestamps subject to linux/OS interrupts, schedulers, TCP stack, etc.
- A new timestamp solution is required for HPC/cloud analytics
 - Accurate, Scalable, Fast lock, Robust

Solution: Time Determination

- Packet timestamp analytics to provide causal order of distributed events:
 - Time determination of distributed events without distribution of reference time, phase, or frequency, US10637597B2, US11303374B2
 - No timing packets are exchanged; clients do not have to recover time;
 - All packet traffic can be utilized to determine the causal event timestamps
 - All packets, interfaces, directions, paths, sizes, classes/priorities
- Centralized processing with global context ensures causal event order
 - Superior timestamp performance vs NTP/PTP in every key measure
 - Time to Lock; accuracy, stability, asymmetry, robustness, scale
 - Timestamp causality

Hybrid Cloud Example Network Topologies

Topologies Created in Neo4J™ Graphical Database

NTP vs TD: non-causal vs causal

NTP event order is incorrect, non-causal

NTP clients may be timed over different paths, over multiple hops and to different servers resulting in per-client asymmetry offset error TD event order is correct, causal

TD is synchronized hop by hop (smaller RTT and thus smaller uncertainty) and uses TTL to enforce timestamp causality

Time Determination: How it works

Time Determination from Network Traces

Time Determination Clock Offset estimation

Real-World Application: Lustre™ Database

All nodes {routed, direct, router, mgsmds, oss-1,2,3} are instantiated in different virtual machines

NTP vs TD: non-causal vs causal

Time Determination: One Way Delay (NTP timed)

One Way Delay – Raw vs Minimum Estimation

Time Determination: Outlier Removal

One Way Delay Estimation – Outlier Limiting Upstream

Time Determination: Outlier Removal

One Way Delay Estimation – Outlier Limiting Downstream

Time Determination: Filtered Moving Percentile

One Way Delay Estimation – Moving Percentile

Time Determination: OWD Estimation

One Way Delay Estimation – Moving Percentile Zoom

Time Determination: Offset Compensation

Offset Compensation – Time Aligned Traces

Time Determination: Time Aligned Traces

Final Time Aligned Traces

Time Determination: OWD Variation vs Packet/s

Time Determination: OWD Variation vs Packet/s

Time Determination: OWD Variation vs Packet/s

Time Determination: One Way Delay (Freerun)

Sync to Freerun Examples: mgsmds – oss-2

Freerun to TD Time aligned at 10 Packets/s => \pm -6 μ s

Time Determination: One Way Delay (Freerun)

Sync to Freerun Examples: mgsmds – client-proxy

Freerun to TD Time aligned at 10 Packets/s => \pm -6 μ s

Summary: TD Features/Benefits

FEATURE	TIME DISTRIBUTION (NTP,PTP)	TIME DETERMINATION (TD)	BENEFIT of TD
Protocol	Active	Passive	Scalability, Operational ease
Clock Recovery	Distributed Clients	Centralized Aggregator	Causality is assured for Multi-
	independently	full network visibility	Point Analytics
Packet Rate	NTP: 1/64s	Limited only by Link Rate, to	Improved signal to noise in
	PTP: 128/s	100M/s	clock recovery
Packet Size	Fixed, typically 96B	All sizes, 64B - MTU	Better performance in multi-
			hop networks
Packet Class	Typically, Best Effort only	All Classes including Expedited	Lower RTT; reduced
		Forwarding	asymmetry
Network Topology	End-to-end client-server path	Linear, Ring, Partial and Full	Causality is assured for Multi-
		mesh	Point Analytics
Time to Sync Lock	Minutes to Hours	Seconds	Near Real-time analytics
Clock Offset	<= End-to-End asymmetry;	<= Single Hop asymmetry	Causality is assured for Multi-
Accuracy	Causality is not assured	adjusted for causality	Point Analytics
	1	1	1

This material is based upon work supported by the U.S. Department of Energy, Office of Science, under Award Number DE-SC-0021595.

