The Role of National Time Scales for Critical Infrastructure

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Tim Kelly Greg Wolff

- Coordinated Universal Time (UTC)
- Time scale function
- Time scale considerations

Coordinated Universal Time (UTC)

The International Bureau of Weights and Measures (BIPM)

Coordination of national metrology institutes

Two-Way and GNSS Equipment

BIRM

GNSS Equipment

Time offset between every national metrology institute ("lab") and BIPM is observed with two-way and/or GNSS common-view time transfer methods

BIPM processing

©2022 Microchip Technology Inc. and its subsidiaries

UTC - UTC("lab") time differences on BIPM site

6 Ref: https://webtai.bipm.org/database/canvas.html

Time scale

Functional description

What is a time scale?

"... time is a defined quantity (dependent on algorithms, definitions, and procedures) and not intrinsic to the atomic clocks used to generate time." – Allan and Barnes

"The purpose of a time scale is to create a virtual clock from an ensemble of physical clocks whose differences from each other are measured at a sequence of dates." – Greenhall

Beyond the precise definition of constructing a "virtual clock" is also the practical need to generate a physical ensemble clock and a UTC steered clock.

Clock model

Clock state differences relative to paper clock

Name	Units	Description
u	ns	Phase (observable)
Х	ns	Phase, without white phase noise
у	ns/day	Frequency
W	ns/day ²	Frequency aging

Process noise model relationship to the estimation states

Time scale ensemble

Optimal weighting matrix

Time scale coordination

Time scale ensemble & steer clock filter

Time scale

Considerations

Practical time scale requirements

Automatic operation

- Startup
- Steady-state forever even if OS hangs
- Fault detection
- Unattended operation no human judgment needed ever
- Real-time signal generation

Robustness

- No events can ever stop the time scale
- Includes unanticipated events
- Includes unusual events
- Software update

- Transients are normal in fact, they are the expected
 - System Startup
 - Adding clocks
 - Dropping clocks
 - Clock failures
 - Missing measurement data
 - Rejected measurement data
- Adapt to changes in clock properties
 - Each clock type has different noise processes
- Cyber security
 - GPS validation
 - System security

Advantages of a time scale

- Accuracy: Time scale gets the most performance out of each contributing clock with robust fault detection based on the ensemble filter learning the states and noise of each clock
- **Resiliency:** The timescale can run independently of GNSS. It is resilient to cyber-attacks using state estimations and other validation methods
- Availability: Supports redundant time and frequency sources and fault-tolerant clock generation. Since the virtual "paper" clock is based on optimal weights of all clocks, impact due to a clock outage is negligible to time scale output

Summary

Coordinated Universal Time (UTC)

• Time scale systems have traditionally been used as instruments reserved for scientific measurements performed by metrology labs

Time scale function

• With today's clock technologies, it's possible to maintain traceability to UTC without dependency on GNSS

Time scale considerations

- When constructing a time scale system, consideration should be given to both "performance" and "practical" characteristics if the goal is to serve national critical infrastructure
- With the global threat of GNSS vulnerability on the rise, the role of a country's national time scale is changing from being a scientific measurement instrument to a vital part of a country's critical infrastructure.

The Role of National Time Scales for Critical Infrastructure

Thank you

Frequency Stability of Atomic References

