Resilient Timing for Critical Infrastructure

	Redundancy and Monitoring	Solutions for Backup Resiliency	Diversity of Sources (Beyond GNSS)	An Example of Resilience and Assurance
Media-Broadcast	Doug Arnold Principal Technologist Meinberg			
Finance and Data Center		David Chandler Product Line Manager Microchip		
Telecom- Mobile			Anand Ram Vice President, Business Development Calnex	
Smart Grid				Nino De Falcis Senior Director of Business Development Oscilloquartz

Finance and Data Center Applications Requiring Synchronization

- REGULATORY DRIVEN Financial Sector 1 microsecond
 - SEC rule 613
 - MiFIDII
 - Premium on security
- APPLICATION DRIVEN Distributed Databases
 - Add replications at edge to increase speed
 - Linearization challenges
 - External synchronization allows
 - Faster databases
 - An improved log file
 - Faster recovery

Precise Time in Data Centers

- Exponential growth in Transactions Per Second (TPS) require more accurate time stamping
 - Thousands of TPS Network Time Protocol (NTP)
 - Millions of TPS Precision Time Protocol (PTP)
- Time stamping consistency critical across not only servers in a datacenter, also distributed datacenters in a network

Why Distributed Data Centers?

- Latency Los Angeles to New York
 - Speed of light 13.1ms across US
 - Single read request two way ~ 26ms
 - Real world fiber ~ 75 to 100ms
- System limited to ~ 10 requests per second
- Lead applications require > 500,000 per second

Why Distributed Data Centers?

- Replication Distributed Data Centers
 - Near user to limit latency
 - Need correct time and sequence
- Externally timed to UTC
 - Accurate time stamps for sequencing
 - Clock uncertainty determines TPS

Three Elements of Precise Time for Data Centers

1. Secure Time Traceability Address spoofing and jamming 2. Resiliency and Backup Address GNSS outages 3. Time Distribution **Time Resiliency:** Atomic Clock Backup Throughout the data center

Synchronization — External Time

Solutions for Resiliency

24- Hour Holdover Drift

Data Center Timing Options – One Solution Does Not Fit All

Hyperscale Data Center

- Thousands of servers owned by one entity
- Hosted Cloud services
- Clients lease capacity and services

Colocation Data Center Provider

- One entity owns structure, utilities and services
- Clients place hardware in cages
- Clients lease infrastructure, utilities and services

Colocation Data Center Client

- Clients place hardware in cages
- Clients lease infrastructure and services