Testing Packet Time and Frequency

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Lee Cosart March 2021

Introduction

Frequency Transport

- One-way: forward and reverse packet streams can be used separately
- Asymmetry is irrelevant
- Stable frequency needed
- PRC (primary reference clock) needed
- GNSS/GPS antenna cable compensation/calibration not needed
- GSM frequency backhaul (50 ppb) is example technology

• Time Transport

- Two-way: forward and reverse packet streams used together
- Asymmetry is critical
- Stable time and frequency needed
- PRTC (primary reference time clock) or ePRTC (enhanced PRTC) needed
- GNSS/GPS antenna cable compensation/calibration needed
- LTE-TDD time/phase (1.5 μsec) is an example technology

Testing Frequency "Physical" vs. "Packet"

• "TIE" (Single Point Measurement) Measurements are made at a single point – a single piece of equipment in a single location – a phase detector with reference – is needed

• "PDV" (Dual Point Measurement) Measurements are constructed from packets time-stamped at two points – in general two pieces of equipment, each with a reference, at two different locations – are needed

Sync Measurement Software

Testing Time "Physical" vs. "Packet"

• "1 PPS" (Single Point Measurement) Measurements are made at a single point – a single piece of equipment in a single location – a phase detector with reference – is needed

"Packet" (Dual Point Measurement) Measurements are constructed from packets time-stamped at two
points – in general two pieces of equipment, each with a reference, at two different locations – are needed

	Timestamp A	Timestamp B
F R F R F P	1286231440.883338640 1286231441.506929352 1286231441.883338640 1286231442.506929352 1286231442.883338640	1286231440.883338796 1286231441.506929500 1286231441.883338796 1286231442.506929500 1286231442.883338796

Grandmaster Test PPS and Packet Probe

Physical 1 PPS signal measurement and packet signal tested with probe match

"TIE" Analysis vs. "PDV" Analysis

"TIE" Analysis (G.810)

- Phase (TIE)
- Frequency accuracy
- Dynamic frequency
- MTIE

• TDEV

"PDV" Analysis (G.8260)

- Phase (PDV)
- Histogram/PDF*, CDF**, statistics
- Dynamic statistics
- MATIE/MAFE

- * PDF = probability density function
 ** CDF = cumulative distribution function
- TDEV/minTDEV/bandTDEV
- ► The importance of raw TIE/PDV:
 - Basis for frequency/statistical/MTIE/TDEV analysis
 - Timeline (degraded performance during times of high traffic?)
 - Measurement verification (jumps? offsets?)

Stability Metrics

Traditional Clock Metrics

- ADEV, TDEV, MTIE
- Traditionally applied to oscillators, synchronization interfaces
- Also applied to lab packet equipment measurements

• Frequency Transport Packet Metrics

- minTDEV, MAFE, MATIE
- Applied to one-way packet delay data
- FPP/FPR/FPC (floor packet percentage/rate/count)

• Time Transport Packet Metrics

- pktselected2wayTE
- Applied to two-way packet delay data
- Assesses link asymmetry

GM, BC

Packet

Networks

Stability Metrics for PDV

Packet Selection Processes

- 1) Pre-processed: packet selection step prior to calculation. Example: TDEV (PDVmin) where PDVmin is a new sequence based on minimum searches on the original PDV sequence
- 2) Integrated: packet selection integrated into calculation. Example: minTDEV (PDV)

Packet Selection Methods

Packet Selection Windows

Windows

- Non-overlapping windows (next window starts at prior window stop)
- *Skip-overlapping windows* (windows overlap but starting points skip over N samples)
- **Overlapping windows** (windows slide sample by sample)

Packet Selection Approaches

- Select X% fastest packets (e.g. 2%)
- Select N fastest packets (e.g. 10 fastest packets in a window)
- Select all packets faster than Y (e.g. all packets faster than 150 μs)

G.8260 Appendix I Metrics

FPC, FPR, FPP: Floor Packet Count/Rate/Percent

PDV metrics studying minimum floor delay packet population

Packet Delay Distribution

© 2021 Microchip Technology Inc. and its subsidiaries

Time Accuracy and Stability Requirements

Time Transport: Two-Way Metrics

Packet Time Transport Metrics

 $r(n) = \left(\frac{1}{2}\right) \cdot \left[R(n) + F(n)\right]$ MeanPathDelay: $\eta_2(n) = \left(\frac{1}{2}\right) \cdot \left[R(n) - F(n)\right]$ TwowayTimeError: $r'(n') = \left(\frac{1}{2}\right) \cdot \left[R'(n') + F'(n')\right]$ pktSelectedMeanPathDelay: $\eta_{2}'(n') = \left(\frac{1}{2}\right) \cdot \left[R'(n') - F'(n')\right]$ pktSelectedTwowayTimeError: min2wayTE $\eta_2^{m}(n) = \left(\frac{1}{2}\right) \cdot \left[R^m(n) - F^m(n)\right]$ pct2wayTE $\eta_2^{p}(n) = \left(\frac{1}{2}\right) \cdot \left[R^p(n) - F^p(n)\right]$ cluster2wayTE $\eta_2^{c}(n) = \left(\frac{1}{2}\right) \cdot \left[R^c(n) - F^c(n)\right]$ *psTDISP (min/pct/clst time dispersion):* ps2wayTE{y} plotted *ps2wayTE statistics:* ps2wayTE statistic such as mean, standard deviation, median, 95

Ideal F/R: floor ("lucky" packets: fastest)

Ideal 2way TE: zero (no asymmetry)

against psMeanPathDelay{x} as a scatter plot

Weighted Average:

 $w(n) = \left[a \cdot F(n) + (1-a) \cdot R(n)\right]$

where $0 \le a \le 1$

percentile plotted as a function of time window tau; min/maxATE

Time Transport: Two-Way Packet Delay

Time Transport: Two-Way Metrics

2wayTE

pktSelected2wayTE

Both 2wayTE and pktSelected2wayTE plots with minimum set to 0. Mean value from unadjusted data.

Selection window = 200s Selection percentage = 0.25% Peak-to-peak pktSelected2wayTE = 663 ns (G.8271.2 APTS limit: <1100 ns)

Two-Way Time Error 🗇 Network Asymmetry Asymmetry in Wireless Backhaul

(Ethernet wireless backhaul asymmetry and IEEE 1588 client 1PPS under these asymmetrical network conditions)

Network Asymmetry

150 km fiber PTP over OTN transport

(2wayTE is 19.1 µsec which represents the 38.2 µsec difference between forward and reverse one-way latencies)

© 2021 Microchip Technology Inc. and its subsidiaries

Summary

- PDV frequency measurements only require a stable reference
- PDV time measurements require common time scale reference at both ends of the network being studied (GNSS at both ends is a way to do this)
- For frequency transport, asymmetry doesn't matter, and one, the other, or both packet flows can be used
- Asymmetry is everywhere, asymmetry is invisible to the IEEE 1588 protocol, thus asymmetry has a direct bearing on the ability to transport time precisely
- The "two-way time error" calculation is a direct measure of asymmetry
- There are two ways to assess time transport: (1) measuring a 1 PPS reference at the node being studied and (2) measuring a packet signal at the node being studied
- Packet metrics for time transport must use both forward and reverse streams together rather than separately as is the case for frequency transport
- Packet metrics for time transport can make use of much of the methodology used for packet frequency transport metrics

Thank you

Lee Cosart

Research Engineer lee.cosart@microchip.com Phone: +1-408-428-7833

