

Atomic Clocks and Primary Frequency Sources

WSTS 2021 TUTORIAL SESSION

March 24, 2021

Marc A. Weiss, Ph.D. Marc Weiss Consulting LLC <u>marcweissconsulting@gmail.com</u>

Atomic Frequency Standards: Produce Frequency Locked to an Atomic Transition

Basic Passive Atomic Clock

- 1. Obtain atoms to measure
- 2. Depopulate one hyperfine level
- 3. Radiate the state-selected sample with frequency $\boldsymbol{\nu}$
- 4. Measure how many atoms change state
- 5. Correct v to maximize measured atoms in changed state

Block Diagram of Atomic Clock Passive Standard

Types of Commercial Atomic Clocks

- Cesium thermal beam standard
 - Best long-term frequency stability
- Rubidium cell standard
 - Small size, low cost
- Hydrogen maser
 - Best stability at 1 to 10 days (short-term stability)
 - Expensive several \$100K
- Chip Scale Atomic Clock (CSAC)
 - Very small size, low power
- Note that new clocks are under development!

Chip Scale Atomic Clock (CSAC)

- Cs or Rb miniature cell standard not a Cs beam tube!
- Coherent Population Trapping (CPT)
- Very small size and low power consumption, but better performance than a quartz oscillator

■ TCXO

10⁶

■ MEMS

Oscillator Comparison

Technology	Intrinsic Accuracy	Stability (1s)	Stability (floor)	Aging (/day) initial to ultimate	Applications
Cheap Quartz, TCXO	10-6	~10 ⁻¹¹	~10 ⁻¹¹	10 ⁻⁷ to 10 ⁻⁸	Wristwatch, computer, cell phone, household clock/appliance,
Hi-quality Quartz, OCXO	10 ⁻⁸	~10 ⁻¹²	~10 ⁻¹²	10 ⁻⁹ to 10 ⁻¹¹	Network sync, test equipment, radar, comms, nav,
Rb Oscillator	~10 ⁻⁹	~10 ⁻¹¹	~10 ⁻¹³	10 ⁻¹¹ to 10 ⁻¹³	Wireless comms infrastructure, lab equipment, GPS,
Cesium Beam	~10 ⁻¹³	~10 ⁻¹¹	~10 ⁻¹⁴	nil	Timekeeping, Navigation, GPS, Science, Wireline comms infrastructure,
Hydrogen Maser	~10 ⁻¹¹	~10 ⁻¹³	~10 ⁻¹⁵	10 ⁻¹⁵ to 10 ⁻¹⁶	Timekeeping, Radio astronomy, Science,

Oscillator Comparison (continued)

Technology	Size	Weight	Power	World Market	Cost
Cheap Quartz, TCXO	≈ 1 cm³	pprox 10 g	≈ 10 mW	≈ 10 ⁹ s/year	≈ \$1s
Hi-quality Quartz, OCXO	≈ 50 cm³	≈ 500 g	≈ 10 W	≈ 10Ks/year	≈ \$100s
Rb Oscillator	≈ 200 cm³	≈ 500 g	≈ 10 W	≈ 10Ks/year	≈ \$1000s
Cesium Beam	≈ 30,000 cm ³	≈ 20 kg	≈ 50 W	≈ 100s/year	≈ \$10Ks
Hydrogen Maser	$\approx 1 \text{ m}^3$	≈ 200 kg	≈ 100 W	≈ 10s/year	≈ \$100Ks

Holding a Microsecond after Loss of Sync (circa 2019)

	Temperature Compensated Crystal Oscillator (TCXO)	Oven Controlled Crystal Oscillator (OCXO)	Chip Scale Atomic Clock (CSAC)	Rb Oscillator (5E-12/mo. aging)	Cs Beam-Tube Oscillator
Range of	10 minutes –	1 – 24 hours	3-15 hours	8 hours – 3	10-300 days
times to hold	1 hour			days	
а					
microsecond					
Cost Range	\$5-20	\$50-250	\$1.5K-3K	\$500-1500	\$20K - \$50K

Conclusions: Atomic Standards

- Rubidium, cesium, and hydrogen atomic frequency standards share a common theme: the stabilization of an electronic (quartz) oscillator with respect to an atomic resonance.
- Although the use of atoms brings with it new quantum mechanical problems, the resulting long-term stability is unmatched by traditional classical oscillators.

Thanks for your attention!

Extra slides follow

Clock Stability

Clock (in)stability is given by:

Atomic Line Q

Signal to Noise

Clock stability can be improved by: Increase Ramsey (observation) times (decrease $\Delta \omega = 1/T_{Ramsey}$) Improve the S/N (more atoms!) Increase the frequency of the clock transition (e.g. optical)

Classical Cesium Standard with Magnetic State Selection

Note there is a newer design with Optical Pumping and Detection of states

- Atoms come from an oven in a beam
- A magnet is used to deflect the atoms in different
 - hyper-fine states

- Atoms pass through a Ramsey cavity in a magnetic field to be exposed to microwaves at frequency v = 9.193 GHz
- A second magnet selects atoms which have made the transition
 - The number of detected atoms is used to tune the frequency

Rubidium Standard

- Two major differences from a cesium standard
 - 1. Cell standard (doesn't use up rubidium)
 - 2. Optically pumped (no state selection magnets)
- Used where low cost and small size are important

Rubidium Standard

•Adapted from figure by John Vig

Optical Microwave Double Resonance Simplified Rb energy level diagram

- Optical pumping is used to deplete one hyper-fine level
- Light tuned to the transition frequency from "A" to the
 - unstable excited state puts all of the atoms in the
 - hyper-fine state "B"

- Microwaves at v = 6.835 GHz stimulate the transition from "B" to "A"
- The absorption of light is measured
- The frequency ν is tuned to minimize the light coming through the 87 Rb cell

Frequency Stability of a Rubidium Standard

•Courtesy of Robert Lutwak, Symmetricom

Hydrogen Maser (Active Standard)

•Adapted from a figure by John Vig

Hydrogen Maser (Active Standard)

Frequency Drift of a Commercial Cesium Standard and a Hydrogen Maser

Frequency Stability of a Cesium Standard (No frequency drift removed)

Frequency Stability of a Hydrogen Maser (Frequency drift removed – 1x10⁻¹⁶/day typical)

