

AGENDA

- PTP Clock Recovery methods
- Oscillator characteristics
- Clock recovery validation parameters
- A model for validation of clock recovery system with oscillator simulation.
- Advantages of oscillator simulated testing

PTP Clock recovery methods

PTP CLOCK RECOVERY COMPONENTS

- Clock recovery systems typically comprise of the following
 - Oscillator
 - DPLLs
 - Jitter attenuators, APLLs
 - PTP Servo (s/w)
- PTP stack and other control s/w is not considered integral to the actual clock recovery.

PTP CLOCK RECOVERY BASICS

- Two way time transfer capable of achieving
 - 1usec 10uses in PTP unaware transport
 - 100 ns in PTP aware network
- T1, T4 from PTP master
- T2, T3 from PTP client
- Delay = ((T2-T1) + (T4-T3))/2
- Offset = ((T2-T1) (T4-T3))/2
- Noise due to PDV/asymmetry is filtered out by packet selection & filtering, and controlling the loop bandwidth of the PLL

PTP Implementations

CENTRALIZED/ALL IN ONE

DISCRETE CLOCK RECOVERY

STANDARD DEFINED PTP MODEL

Figure A.1 – Functional model of a packet-based equipment clock – slave – frequency (PEC-S-F)

Oscillator Characteristics

OSCILLATOR CHARACTERISTICS

- Regardless of the PTP clock recovery system design, an oscillator is used as the system clock for the clock recovery solution
- The choice of oscillator depends on the performance requirements of the PTP PLL and the loop bandwidth of the PTP
- The oscillator performance, both deterministic and non-deterministic will determine if the clocking solution would be able to meet the performance requirement (MTIE, TDEV) of the synchronization standard.
- Deterministic factors are oscillator aging, and temperature stability
- Non-deterministic factors are environment factor, and noise (stochastic) of the oscillator.

Clock recovery validation

PTP SOLUTION EVALUATION WITH OSCILLATOR H/W

- Typically done by testing the actual oscillator hardware with the PLL closed loop.
- Require control and manipulation of the following factors
 - Temperature
 - Airflow
 - Vibration
- But don't have any control on the following factors
 - Oscillator noise,
 - Short term frequency jumps/instability

A model for validation of clock recovery system with oscillator simulation.

SIMULATION DESIGN

Advantages of oscillator simulated testing

EVALUATION OF THE PTP SOLUTION WITH OSCILLATOR SIMULATION

- Better control on the evaluation of the performance
- Test non-standard and indeterministic behavior of the oscillator
- Test along with packet clock HRM model and network PDVs.
- Able to catch corner case unlocking behavior of the PTP servo
- Able to test holdover performance
- Faster turnaround time for servo algorithm trials.

