An Accurate and Scalable Clock Synchronization
System for Commodity Networks

Balaji Prabhakar
VMware Founders Professor of Computer Science
Departments of Electrical Engineering and Computer Science
And, by courtesy, the Graduate School of Business
Stanford University

Joint work with: Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Mendel Rosenblum and Amin Vahdat

Background and Motivation

Synchronized clocks are fundamental to the operation of many distributed

systems
Distributed databases: improve performance and consistency
Software-defined networking: enforce ordering of forwarding rule updates
Financial systems: guarantee transaction execution order
Network congestion control: TDMA-like flow scheduling (Fastpass)

Our goals:
e Synchronize clocks to 10s of nanoseconds in real-time and at scale
* Provide “accurate timestamping” as a fundamental primitive in data centers

Synchronizing clocks with probes

All methods of clock sync use these
4 timestamps; main differences:

t, =t + At, 1. Where to take timestamps?
2. How to process the timestamps?

Where to take timestamps

Huygens
* Uses NIC or CPU timestamps and, respectively, gets ns- and us-level sync accuracy
* Does not need timestamps from switches
* is asoftware-based approach

Huygens: Basic equations

Probe from A to B:
Receive time = transmit time + delay
RX, — At, = TX, — At, + Propogation and queueing delay
Aty — At, = RX, — TX, — Propogation and queueing delay
At, — At, < RX, — TX,

Probe from B to A:

e Atb Y Ata > TXb == RXa

Clock bounds over time: Google 40G testbed

. ‘upper bound points
+ lower bound points

Clock bounds over time: Google 40G testbed

o -l . ‘upper bound points
Offset: -93.3 us 2y : Ny % «1 *+ + lower bound points }

Offset: -96.6 us
Drift: -1.65 us/sec

Nonlinear clock drifts

Clock frequency varies over
longer periods of time due to
temperature variations

R
—
—

Solution: Estimate clock offsets

every 2-4 seconds since the
frequency difference is nearly
constant over these intervals

®
7]
=
(%)
2
é'l()

20 30 10 50 60
Clock of NIC A (sec

3 key ideas to find the middle line

 Support vector machine
e Coded probes

e Network effect

Syncing clocks with SVMs

How to identify packets
with zero queueing
delays and no timestamp

3
@
S
@
°
c
3
[}
a1]

.l achieves sync
accuracy of 300~400 ns.
Noisy timestamps cause
synchronization errors!

Second
packet

First
packet

Coded probes

>>10 us

<< 10 us

Second packet
delayed more

First packet
delayed more

Likely no
queueing delay

Coded probes

+ upper bound points . + + upper bound points
+ lower bound points }) . « « lower bound points
SVM upper bound o SVM upper bound
. SVM lower bound || SVM lower bound
*| — SVM middie line —— SVM middle line

Bounds (usec)

§
é b
8

Empirically, coded probes filter out
90% of bad data and reduce the
clock sync error by a factor of 4.

The network effect
-- identifying the error

If my clock is at 10, B’s If my clock is at 10:15, C’s
clock must be at 10:15 clock must be at 10:05

3L?

If my clock is at 10:05, A’s
clock must be at 9:50

Guys, we are off by
10 minutes!

The network effect
-- fixing the error

|
STD(err after N.E.) zﬁSTD(err before N.E.)

Pilots and deployments

Google — Jupiter testbed
* 3-stage 40Gb/s Clos network
 20racks, 237 servers

A 10G-40G production network

* 5-stage Clos network

Stanford testbed
e 2-layer 1G network
 8racks, 128 servers
* Cisco 2960 and Cisco 3560 switches

Many financial firms

Stanford

» 2-stage 1Gb/s Clos network
 8racks, 128 servers

NetFPGA verification

* Single NetFPGA acts as 4 independent
NICs sharing the same clock

» Different NetFPGAs synced with 1/O pins \

Comparison with NTP

NTP Huygens
(with NIC timestamps)

Mean abs. ggth Mean abs. 99th
error percentile error percentile
abs. error abs. error

0% load 177.7 ns 558.8 ns 18.5 ns
40% load 77,975 ns 347,638 ns 22.0ns

80% load 211,011 ns 778,070 us 32.7ns

Conclusion

Huygens synchronizes
— NIC clocks to within 10s of hanoseconds
— CPU/VM/container clocks to within a few microseconds

It is a software-based end-to-end system, and is lightweight and scalable
(bandwidth, CPU overhead)

Tick Tock Networks commercializing the tech
— Contact hello@ticktocknetworks.com

