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Background and Motivation

Synchronized clocks are fundamental to the operation of many distributed

systems
Distributed databases: improve performance and consistency
Software-defined networking: enforce ordering of forwarding rule updates
Financial systems: guarantee transaction execution order
Network congestion control: TDMA-like flow scheduling (Fastpass)

Our goals:
e Synchronize clocks to 10s of nanoseconds in real-time and at scale
* Provide “accurate timestamping” as a fundamental primitive in data centers




Synchronizing clocks with probes

All methods of clock sync use these
4 timestamps; main differences:

t, =t + At, 1. Where to take timestamps?
2. How to process the timestamps?




Where to take timestamps

Huygens
* Uses NIC or CPU timestamps and, respectively, gets ns- and us-level sync accuracy
* Does not need timestamps from switches
* is asoftware-based approach




Huygens: Basic equations

Probe from A to B:
Receive time = transmit time + delay
RX, — At, = TX, — At, + Propogation and queueing delay
Aty — At, = RX, — TX, — Propogation and queueing delay
At, — At, < RX, — TX,

Probe from B to A:

e Atb Y Ata > TXb == RXa




Clock bounds over time: Google 40G testbed
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Clock bounds over time: Google 40G testbed
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Offset: -96.6 us
Drift: -1.65 us/sec




Nonlinear clock drifts

Clock frequency varies over
longer periods of time due to
temperature variations
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Solution: Estimate clock offsets

every 2-4 seconds since the
frequency difference is nearly
constant over these intervals
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3 key ideas to find the middle line

 Support vector machine
e Coded probes

e Network effect




Syncing clocks with SVMs

How to identify packets
with zero queueing
delays and no timestamp
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.l achieves sync
accuracy of 300~400 ns.
Noisy timestamps cause
synchronization errors!




Second
packet

First
packet

Coded probes

>>10 us

<< 10 us

Second packet
delayed more

First packet
delayed more

Likely no
queueing delay




Coded probes
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Empirically, coded probes filter out
90% of bad data and reduce the
clock sync error by a factor of 4.




The network effect
-- identifying the error

If my clock is at 10, B’s If my clock is at 10:15, C’s
clock must be at 10:15 clock must be at 10:05

3L?

If my clock is at 10:05, A’s
clock must be at 9:50

Guys, we are off by
10 minutes!




The network effect
-- fixing the error
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Pilots and deployments

Google — Jupiter testbed
* 3-stage 40Gb/s Clos network
 20racks, 237 servers

A 10G-40G production network

* 5-stage Clos network

Stanford testbed
e 2-layer 1G network
 8racks, 128 servers
* Cisco 2960 and Cisco 3560 switches

Many financial firms




Stanford

» 2-stage 1Gb/s Clos network
 8racks, 128 servers




NetFPGA verification

* Single NetFPGA acts as 4 independent
NICs sharing the same clock

» Different NetFPGAs synced with 1/O pins \




Comparison with NTP

NTP Huygens
(with NIC timestamps)

Mean abs. ggth Mean abs. 99th
error percentile error percentile
abs. error abs. error

0% load 177.7 ns 558.8 ns 18.5 ns
40% load 77,975 ns 347,638 ns 22.0ns

80% load 211,011 ns 778,070 us 32.7ns




Conclusion

Huygens synchronizes
— NIC clocks to within 10s of hanoseconds
— CPU/VM/container clocks to within a few microseconds

It is a software-based end-to-end system, and is lightweight and scalable
(bandwidth, CPU overhead)

Tick Tock Networks commercializing the tech
— Contact hello@ticktocknetworks.com




