

Dependable Timing in Power Systems wsts

March 26th, 2019 – San Jose, CA

Dan Rippon (dan_rippon@selinc.com) Engineering Manager Schweitzer Engineering Laboratories

Agenda

- Power system applications and timing requirements
- Overview of present challenges and vulnerabilities
- Characteristics of dependable clocks
- Dependable time distribution systems to mitigate GNSS vulnerabilities

Protective Relays Basics

Protective Relays Can Function Without Precise Time

Time Synchronization Is Important for Power Systems

SCADA vs. Synchrophasors

(Only magnitude shown for ease of comparison)

<1Hz vs. 30-240 Hz

Source: E. O. Schweitzer, III, D. E. Whitehead, G. Zweigle, V. Skendzic, and S. V. Achanta, "Millisecond, Microsecond, Nanosecond: What Can We Do With More Precise Time?" proceedings of the 42nd Annual Western Protective Relay Conference, Spokane, WA, October 2015

Direct Time-Domain Sampling

Few kHz vs. MHz

Source: E. O. Schweitzer, III, D. E. Whitehead, G. Zweigle, V. Skendzic, and S. V. Achanta, "Millisecond, Microsecond, Nanosecond: What Can We Do With More Precise Time?" proceedings of the 42nd Annual Western Protective Relay Conference, Spokane, WA, October 2015

Traveling Wave Fault Location

System 1: Independent clocks at each end

Traveling Wave Fault Location

System 2: Direct synchronization *No dependence on external time*

Time Synchronization Is Important for Power Systems

Consider Potential GNSS Vulnerabilities

- Antenna failures
- Device failures

- Solar flares
- Jamming
- Spoofing

Secure and Dependable Operation

Security "Provide accurate, uncompromised timing"

Dependability "Continuously provide secure and reliable timing"

What Makes a Secure and Dependable Clock?

- Quality: Fit for use, free from defects
 - Rigorous design, testing, and manufacturing processes
- Reliability: Dependable operation through harsh conditions, expected and unexpected:
 - Environmental: Temperature, EMI, IEEE 1613 Class 2, etc.
 - Leap seconds, week number rollovers, and similar expected events
 - Holdover: accurate time <u>and</u> time quality estimate
 - Resiliency: maintain time despite harsh conditions

Clock Resiliency

Multiple inputs from diverse sources, time verification engine, advanced diagnostics!

Multi-Input Timing with Verification

- Independently track and analyze multiple input sources
- Verify each input source independently
- Compare and verify multiple sources against each other
- Fail-over without interruption
- High-stability holdover

Advanced Diagnostics

- Quality and health estimations and logging
 - Input time source diagnostics
 - Detailed information for GNSS troubleshooting
 - Device status, available holdover performance
- Reporting and logging of timing events observed
- Logging, alarms, Syslogs, and other standard features
- Traceability information

User-definable Modes

- User-defined priority list
- Multi-input, automatic source selection
- Manual source selection

Dependable Timing Systems

Conclusions

- Timing is increasingly important in power systems
- Secure, dependable, accurate timing is available now, and new timing products and features are on the horizon
- Understand timing challenges and design and implement robust systems to improve system integrity