5G RRH Phase Synchronization Challenges

Agenda

- **<** 5G RRH requirements
- SG front-haul configurations
- Additional filtering on RRH
- < Oscillator requirements
- < Network configurations and oscillators

Overall & Synchronizer output requirements

- Synchronizer output
 - □ 16ppb / 1ms
 - 10ns (Cluster)
 - 200ns (End to End)

- < Radio
 - 50ppb / 1ms
 - 65ns (Cluster)
 - 1.5uS (end to end)

RRH network deployment scenarios (XRAN)

CU/DU - RRH Summary of Network Scenarios

rakon

- #1 Point to Point
- **4** #2 G.8273.2 A/B/C/D with n hops
- #3 PTP-GM on front-haul, n hops on each sides to CU/DU and RRH
- #4 Full chain of EEC
- \$\u00ef{1}\$ \$\u
- #6 PTP-GM on the RRH

Cases #1-#3 with no SyncE support

- At Constant temperature
- All cases with temperature variation

Commonly used scenarios

rakon

Synchronizer: Error inputs & Output Errors

NFORMATION

Noise at the input

rakon

Network Limit of G.8262/G.8262.1 from G.8261

Table 4 – Network limit for wander at EEC-Option 1 interfaces expressed in MTIE

Observation interval τ (s)	MTIE requirement (ns)
$0.1 < \tau \leq 2.5$	250
$2.5 < \tau \leq 20$	100 τ
$20 < \tau \leq 2000$	2000
$\tau > 2000$	$433 \tau^{0.2} + 0.01 \tau$

- Figure 13 Network limit for wander (MTIE) at EEC-Option 1 interfaces
- *G.8262.1 may have a reduced network limit

Requirements

 To get a 16ppb ffo at the synchronizer output

Figure 2 Additional MTIE requirements for SyncE layer

NFORMATION

Generalized approach

rakon

8

Frequency offset = A * 2 * pi * f_{bw}

Table 4 – Network limit for wander at EEC-Option 1 interfaces expressed in MTIE

Observation interval τ (s)	MTIE requirement (ns)
$0.1 < \tau \leq 2.5$	250
$2.5 < \tau \le 20$	100 τ
$20 < \tau \leq 2000$	2000
$\tau > 2000$	433 $\tau^{0.2}$ + 0.01 τ

Figure 13 – Network limit for wander (MTIE) at EEC-Option 1 interfaces The filter value needs to be 10mHz

- If network limit to be 1/5 for new networks
 - □ Filter value to be 50mHz

Phase Error across temperature - 10mHz

Assumptions :

NFORMATION

- Wander generation with ideal input case
- The radio may see a full range of temperature variations 0.5degC/min
- Various Oscillator sensitivities

With 0.1ppb/degC

With 1ppb/degC

rakon

9

<20ns

100+ns

Phase Error across temperature - 50mHz

Assumptions :

NFORMATION

- Wander generation with ideal input case
- The radio may see a full range of temperature variations 0.5degC/min
- Various Oscillator sensitivities

With 1ppb/degC

With 5ppb/degC

<20ns

>30ns

rakon

Slope requirements Vs network Scenarios

rakon

SI No	Description	Network Error	Slope	Output Performance
1	Traditional Networks	G.8262	0.1ppb/Deg C	<20ns
2	New Networks	G.8262.1	1ppb/deg C	<20ns
3	Point to point	G.8262.1 Wander	5ppb/degC	<20ns

Oscillators for RRH

	Post compensated TCXO	Miniature OCXO
Slope	1-5ppb/°C	0.1ppb/°C
Frequency Vs Temp Performance	30ppb (-40°C to 85°C)	20ppb (-40°C to 85°C)
Size	7mmx5mm, 5mmx3.2mm	7mmx5mm
Network Support	New Networks	Traditional Networks
Power	30mW	300mW
Warm up	100ms	3min

Summary

rakon

- SG RRH deployment scenarios and fronthaul configurations vary
 - Thus the network noise in to the RRH
- Network noise and reference clock impairments contribute to phase errors
 - Selection of loop bandwidth and refence clock plays key role
- Network structure has a major impact and selection of oscillators for Remote Radio Heads
- There are number of possible solutions available on the reference clocks

14

Thank you