Power Matters.™

Network Time Transport: Measurements, Asymmetry, and Metrics

Lee Cosart lee.cosart@microsemi.com

WSTS 2014

Introduction

- Frequency transport
 - One-way: forward & reverse packet streams can be used separately
 - Asymmetry is irrelevant
 - Stable frequency needed
 - PRC (primary reference clock) needed
 - GNSS/GPS antenna cable compensation/calibration not needed
 - GSM frequency backhaul (50 ppb) is example technology

- Time transport
 - Two-way: forward & reverse packet streams used together
 - Asymmetry is critical
 - Stable time and frequency needed
 - PRTC (primary reference time clock) needed
 - GNSS/GPS antenna cable compensation/calibration needed
 - LTE-TDD time/phase (1.5 µsec) is example technology

Packet Time Transport Measurements

PRTC Testing "Physical" vs. "Packet"

"1 PPS" (Single Point Measurement)

• Measurements are made at a single point – a single piece of equipment in a single location - a phase detector with reference - is needed

- "Packet" (Dual Point Measurement)
 - Measurements are constructed from packets time-stamped at two points in general two pieces of equipment, each with a reference, at two different locations – are needed

Time Accuracy and Stability Requirements

End Application Time Clock

End Application Time Clock

Distributed architecture (e.g. CPRI)

D

Distributed architecture (e.g. CPRI)

Intra-site Time sync i/f

T-TSC

С

Deployment Case 2

PRTC

Microsemi

Δ

В

G.8271.1

T-GM

Packet

Network

Network Time Reference

(e.g. GNSS Engine)

- A: Time Error: <=100ns
- C: Time Error: <=1.1µs

Frequency Transport: One-way packet delay

Packet Delay Sequence

Frequency Transport: One-way metrics

Calculations made on either forward PDV sequence or reverse PDV sequence *individually*

- PDV phase
- PDV histogram/PDF*,CDF**, statistics
- PDV dynamic statistics
- MATIE/MAFE
- TDEV/minTDEV/bandTDEV

- * *PDF* = probability density function
- ** CDF = cumulative distribution function
- FPC/FPR/FPP (floor packet count/rate/percent)

Frequency packet metrics focused on *variations*; knowledge of *latency* and *asymmetry* not needed

Time Transport: Two-way packet delay

Time Transport: Two-way metrics

Forward/Reverse FPP

Symmetricom TimeMonitor Analyzer

Comments:

- (1) Knowledge of asymmetry and latency in both directions is critical
- (2) Offset is a fundamental two-way calculation
- (3) Ideal fwd/rev packet: floor Ideal offset: zero

Approaches:

- (1) Based on both one-way sequences
- (2) Based on a single sequence constructed from both oneway sequences (e.g. offset)

Two-way MAFE (MAFE of minOffset) (file=probe-2008_09_04--12_54d.tpk)

© 2014 Microsemi Corporation. COMPANY PROPRIETARY

9

Asymmetry in Wireless Backhaul (Ethernet wireless backhaul asymmetry and IEEE 1588 slave 1PPS under these asymmetrical network conditions)

Asymmetry in Microwave Transport (Ethernet microwave radio packet delay pattern asymmetry)

Asymmetry in SHDSL (SHDSL forward/reverse packet delay asymmetry)

Symmetricom TimeMonitor Analyzer (file=probe-2009_06_16--10_21.tpk) Phase deviation in units of time; Fs=16.00 Hz; Fo=10.000000 MHz; 2008/06/16; 09:57:27 SHDSL DSLAM and modem; 1 (blue); TP5000 Fwd PDV Phase; 2 (red); TP5000 Rev PDV Phase 2.60msec 200 usec/div 400 0.000 3.195 15.0 minutes/div usec hours hours

Metro Ethernet Network

Metro Ethernet forward and reverse packet delay sequences with zooms into the respective floors and minTDISP

minTDISP

Microsemi

150 km fiber SONET transport (Offset is -20.3 μsec which represent -40.6 μsec difference between forward and reverse one-way latencies)

Conclusions

- Packet time transport measurements require common time scale reference at both ends of the network being studied (GNSS at both ends is a way to do this)
- Asymmetry is everywhere, asymmetry is invisible to the IEEE 1588 protocol, thus asymmetry has a direct bearing on the ability to transport time precisely
- The "offset" calculation is a direct measure of asymmetry
- There are two ways to assess time transport: (1) measuring a 1PPS reference at the node being studied and (2) measuring a packet signal at the node being studied
- Packet metrics for time transport must use both forward and reverse streams together rather than separately as is the case for frequency transport
- Packet metrics for time transport can make use of much of the methodology used for packet frequency transport metrics

Lee Cosart

Senior Technologist <u>Lee.Cosart@microsemi.com</u> Phone: +1-408-428-6950

