

Performance Results of Miniature Cs D1 CPT Atomic Clock

Yasuo "Mario" Maruyama

Principal Engineer, Timing / Sensing Devices

EPSON Electronics America

OBJECTIVE

Develop a new atomic oscillator that

1 is significantly smaller than our previous generation

and

② is smaller than and has better stability than the existing state of the art.

Miniature Atomic Clock

Stability vs. Size 1.00E-09 Cs CPT CSAC smaller and Long term stability (Aging / month) better stability Rb CPT #1 than existing state-of-the-art Rb CPT #2 1.00E-10 AO6860 Rb Existing State of the Art Rb-3100 Cs CPT Rb Rb Epson Rb CSAC Rb3100 AO6860 CPT CPT #1 #2 1.00E-11 Size (cm³) 16 203 1204 32 46 10 100 1000 10000 3e-10 1e-¹⁰ 4e-11 Aging/mo 9e-10 2e-11 Volume [cm³] (max)

This

Work

Epson

73

5e-11

Miniature Atomic Clock

Comparison: Size & Stability

TECHNOLOGY How did we build this?

Technology Overview – Basic Principles

- Coherent Population Trapping
- Cæsium D1 Transition
- Many components made by Epson
 - VCSEL (Vertical Cavity Surface-Emitting Laser)
 - TCXO (Temperature-Compensated Crystal Oscillator)
 - Physics Package
 - Synthetic Quartz
 - · ICs

Size: 18 (H) mm x 60 (W) mm x 68 (D) mm

5

Coherent Population Trapping (CPT)

Select one Sublevel Frequency of Cs.

Advantage: Laser enables Miniaturization

Step 1: Establish Resonance with Cs

- We use a VCSEL as a light source. ٠
- Temperature of the VCSEL and gas cell are controlled.
- By sweeping the VCSEL drive current:
 - we can sweep laser wavelength. ٠
 - and measure absorption. ٠
- We adjust laser wavelength to around 894nm, ٠ and observe two absorption spectrum (AS).
- The difference between the two AS is 9.2GHz. ٠

Miniature Atomic Clock

Absorption spectrum

Step 2: Modulate Laser with RF

We modulate the laser by changing the drive current to get two wavelengths.

creates two laser spectra which are 9.2GHz apart.

A 4.6 GHz signal

Miniature Atomic Clock

Step 3: Sweep Frequency

- CPT spectrum affects short term stability.
- A narrow and strong peak is best.

short term stability
$$= \frac{A}{SN} \times \frac{Linewidth}{9.2GHz}$$

• We mix buffer gas in gas cell for better short term stability.

Miniature Atomic Clock

9

By sweeping 4.6GHz microwave frequency, we can get CPT spectrum.

Block Diagram of the Atomic Oscillator

CPT control loop

• Controls modulation to match the CPT spectrum.

Wavelength Control Loop

• Adjusts VCSEL bias current to center the wavelength.

Both loops are controlled by one IC.

EPSON EXCEED YOUR VISION

Error Budget

Affect frequency parameter

(Parameter aging) × (Sensitivity)

 \Rightarrow The influence is reduced.

Parameter	aging /month	
1 Laser Wavelength	+6E-12	
② Transmissivity	-1E-11	
③ 4.6 GHz Microwave power	±1E-11	

<u>SUM:-1.4E-11~+6E-12</u> \Rightarrow All parameters are reduced, and the aging characteristic is achieved.

MEASURED DATA

- 1. Long-Term Stability (Aging)
- 2. Short-Term Stability (Allan Variance)
- 3. Warm-Up Time
- 4. Temperature Stability
- 5. Phase Noise

Long-Term Stability (Aging)

Short-Term Stability (Allan Variance)

Points for Short-Term Stability:

- **Cell Scale**
- **Buffer gas pressure**
- **Optical power**
- PLL CN
- Loop gain

Miniature Atomic Clock

Warm-Up Time

Points for Warm-Up:

• Temperature control loop

Temperature Stability

Points for Temperature Stability:

- Cell temp stability
- VCSEL temp stability
- Mixed buffer gas

Miniature Atomic Clock

Points for Phase Noise:

• Gas cell determines phase noise below the PLL loop bandwidth

EPSON

- Local oscillator determines phase noise above the PLL loop bandwidth
- Cut off frequency is 10Hz

SUMMARY

- Technology
- Performance Achieved

Performance Achieved

Parameter	Target	Typical	Units
Stability			
Long-Term	< ±5x10E-11	±2.5x10E-11	per month
Short-Term (τ=1)	< 5x10E-11	2.5x10E-11	
vs. Temperature	< ±2x10E-10	±0.5x10E-10	
Warmup (200 ppt)	< 20	9	minutes
Temperature	0 ~ +50 -10 ~ +60		°C
Supply			
Voltage	3.3		V
Power (operating)	3	3	W
Power (turn-on)	20	20	W
Dimensions	68 x 60 x 18		mm

