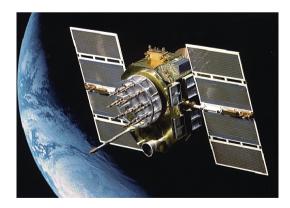


Time Travel and its Black Holes

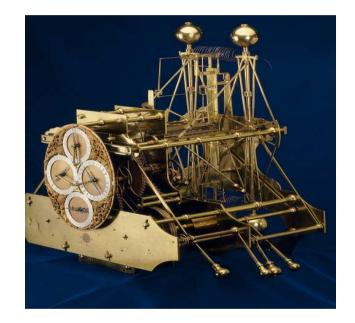
WSTS17 4-6th April 2017

Charles Curry BEng, CEng, FIET, FRIN Chronos Technology Ltd

Presentation Contents


- About Time
- Time travel
- Who needs Time?
- Black Holes
- Is there hope?

Black Swan Events


Nassim Nicholas Taleb 2007 "The Black Swan"

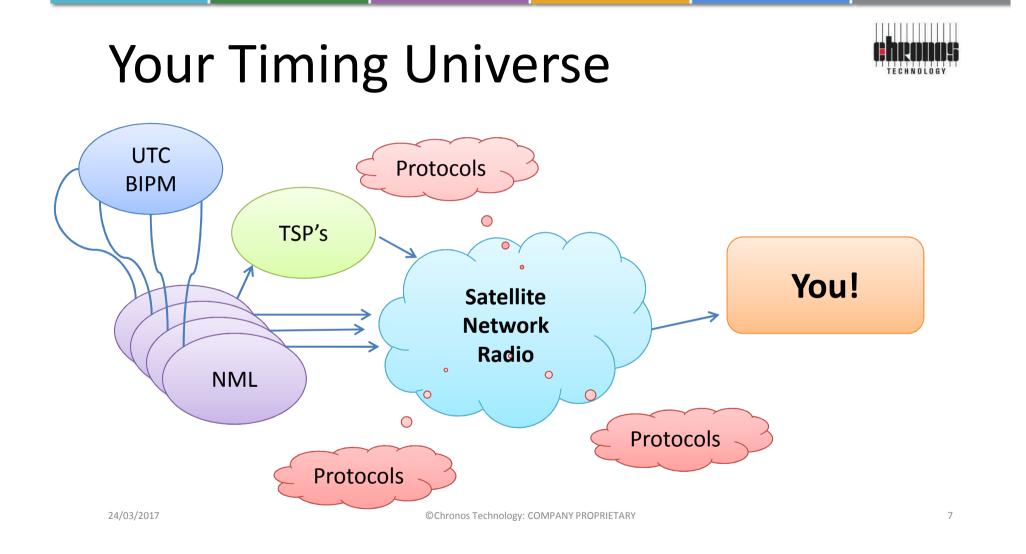
- Surprise to the observer
- Significant impact
- With hindsight could have been predicted.
- Not necessarily a surprise to all

3 Types of Time

- Time of Day
 - What time is it?
 - Time stamping
- Timing "Frequency"
 - Frequency syntonisation
 - Constant Speed
- Alignment to Timescale "Phase"
 - UTC /1pps/Phase/Synchronisation
 - Time slot alignment (TDD)

UTC Traceability

- Coordinated Universal Time
 - 'Temps Universel Coordonné'
 - Compromise Acronym 'CUT' & 'TUC' = 'UTC'
- UTC = Time Standard
 - Not a 'time zone' like GMT or BST
- BIPM in Paris coordinates 'Time' globally
 - from ~400 Atomic 'Quantum1' Clocks at ~70 Metrology Labs
 - e.g. NPL, NIST, USNO
- Traceability via GNSS or National Metrology Lab


Courtesy USNO

Time Travel!

- Network
 - NTP, PTP, SyncE,
 - White Rabbit
- Sky
 - GNSS (GPS, Galileo, Glonass, etc.)
 - Iridium
- Terrestrial LF Radio
 - MSF 'Rugby' 60 KHz, eLoran 100 KHz, Droitwich 198 KHz, DCF77

Who Needs Time?

- Critical National Infrastructure
- Telecom
- Broadcast
- Utilities
- Financial Services
- Transport
- Defence
- + many more

Chronos 24x7 Time System Support Operations

Why is Time Critical?

- Time Stamping of Calls/Trades
 - Time of Day (ms, μs, ns?)
- Consistent data rates
 - Data Traffic Timing (μs, ns)
- Using TDD in 4G/5G (ns)
- Inter-Cell Interference Cancellation (ns)
 - Phase
- Emerging Standards
 - MiFID II

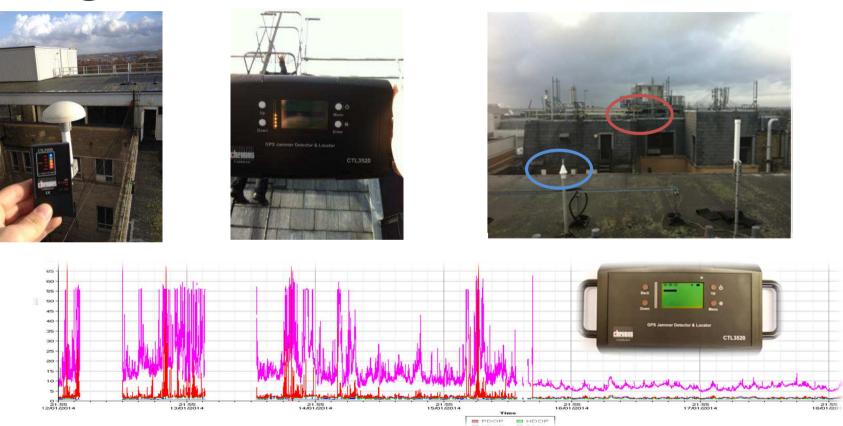
Small cells and Heterogeneous **Networks** Slide Courtesy of EE **Macro sites** Microcell Microcell Small Cells as an underlay network Hot spot Indoor solutions Cell edge ITSF 2013: Time & Sync in Telecoms

10

Why is Time Critical? – Broadcast

- Synchronising Programmes
 - Time of Day (ms)
- Broadcast
 - Frequency Tuning (ms, μs)
- Digital Audio/Video Broadcast (DAB, DVB)
 - Phase Single Frequency Networks (SFN) (ns)

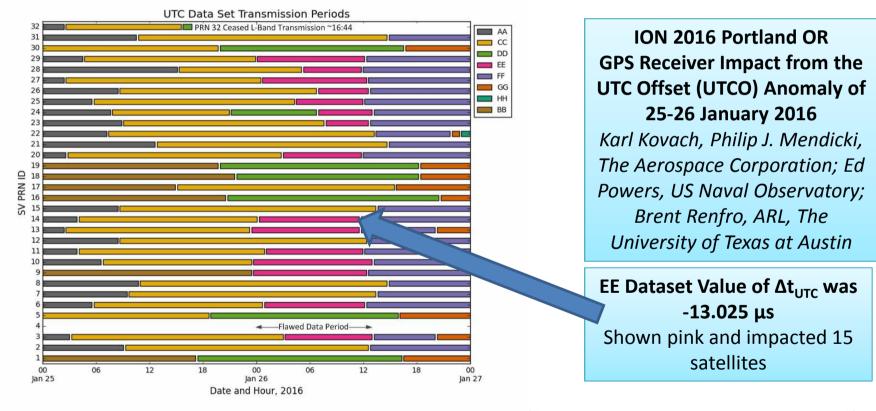
Black Holes



- Rogue Antennas
- Poor Installations
- Jamming Problems
- Satellite Problems
- Receiver Problems

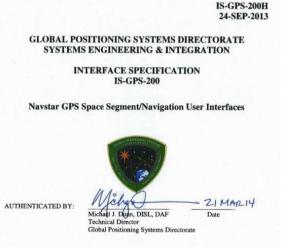
Rogue Antennas

Poor Installations


24/03/2017

©Chronos Technology: COMPANY PROPRIETARY

Every Day Jamming – Container Port



GPS UTC Offset Anomaly - 2016

Calculating the UTC Offset

Page 123 - Section 20.3.3.5.2.4 Coordinated Universal Time (UTC)

 $\Delta t_{UTC} = \Delta t_{LS} + A_0 + A_1(t_E - t_{ot} + 604800(WN-WN_t))$, seconds

Where:

 Δt_{LS} = current leap second t_E = GPS receiver's estimate of current GPS TOW t_{ot} = reference time for UTC data secs in week 604800 = number of seconds in a week WN = current full GPS week number WN_t = UTC reference week number

24/03/2017

© Chronos Technology: COMPANY PROPRIETARY

Let's use real data

Values are taken from the navigation message from SVN43/PRN13 (one of the first satellites to be impacted) for times before the event (23:13) and during (23:26)

$\Delta t_{UTC} = \Delta t_{LS} + A_0 + A_1(t_E - t_{ot} + 604800(WN-WN_t))$

Date	Time	Δt _{υτc} μs	∆t _{LS}	A ₀	A ₁	t _E	t _{ot}	WN	WN _t
25 Jan	23:13	-0.002	17s	-9.93132e-10	5.33e-15	170034	319488	89	89
25 Jan	23:27	-13.025	17s	-1.3696e-05	1.24e-14	170874	0	89 🤇	0

Data and method courtesy John Lavrakas

Glonass in 2014

- Glonass 1st April 2014
 - All satellites broadcast corrupt data for 11 hours
 - Massive positional errors
- Glonass 14th April 2014
 - 8 satellites set unhealthy for 30 minutes
- Press Coverage
 - <u>http://gpsworld.com/the-system-glonass-fumbles-forward/</u>
 - <u>http://gpsworld.com/the-system-glonass-in-april-what-went-wrong/</u>

Galileo in 2017

BBC	Sign in	†	News	Sport	Weather	iPlayer	τv	Ra			
NEWS											
Home UK	World Business	Politics	Tech	Science	Health	Education	Enf	tertai			
Science &	Environment										

Galileo satellites experiencing multiple clock failures

By Jonathan Amos BBC Science Correspondent

() 18 January 2017 | Science & Environment

The onboard atomic clocks that drive the satellite-navigation signals on Europe's Galileo network have been failing at an alarming rate.

Across the 18 satellites now in orbit, nine clocks have stopped operating.

Three are traditional rubidium devices; six are the more precise hydrogen maser instruments that were designed to give Galileo superior performance to the American GPS network.

Galileo was declared up and running in December.

Beware the Ides of March!

- Week Number Rollover 2019
 - 31st March 2019 WN = 1023
 - 7th April 2019 WN = 0

- Zeroing terms in Δt_{UTC} caused grief in January 2016
 - What will happen in April 2019?

Is there hope?

- Complementary Technologies
- 'Best of 3' Architecture
- Lots of Literature

eLoran

- Anthorn, UK Sovereign Time (ns)
- Sole Survivor of the European Loran Network
 - UTC Traceability via Chronos equipment
- Working with GO-Science and Cabinet Office
 - to get Norway, Germany, Denmark & France back on air
- eLoran is an important complement to GNSS
 - LDC can provide ephemeris data, differential data, PRS Keys, NANU/NAGU and spoofing alerts

Two out of Three Ain't Bad

- True resilience is 3 dissimilar sources of UTC over 3 dissimilar technological routes
 - Network time using PTP or SyncE
 - Multiple GNSS helps
 - Another off-air non-satellite UTC Traceable PNT e.g. eLoran
- One solution easily compromised like a simple password
- Two solutions dilemma whose right and whose wrong?
- Three solutions perfect Meat Loaf number!

Further Reading

- SVN 23 Case Study
- SVN 23 White Paper
- Detecting Rogue GPS Antennas
- <u>RAEng Report on GNSS</u>
 <u>Vulnerabilities</u>
- RAEng Report on Space Weather
- Blackett Review Recommendation

Blackett Quantum Review Recommendation 2: (UK) Cabinet Office and the Government Office for Science should review the critical services dependent on GNSS timing signals and mitigate the risks by analysing how long they should be capable of operating with back-up or holdover technology.

www.chronos.co.uk www.gpsworld.biz www.taviga.com charles.curry@chronos.co.uk charles.curry@taviga.com