MBS Indoor Timing Receiver Concept, Implementation, and Test Results

Subbu Meiyappan, Wouter Pelgrum and Vikram Kalkunte NextNav LLC

April 2017

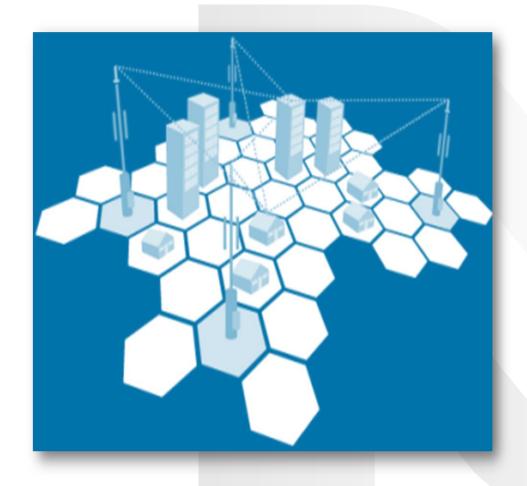
Motivation for Indoor Timing: Small Cells/5G

- Small-cell synchronization and timing is critical for network capacity and management reasons
- Current sync performance requirements approximately +/-1.1 μ s and 16 ppb
- Current installations require GPS drop for time synchronization, distribution of time within building using **IEEE 1588v2 (PTP)**
 - Capex of \$15k \$60k

NextNav

- 5G expected to be more stringent requirements and a bigger challenge for the Indoor and Urban canyons

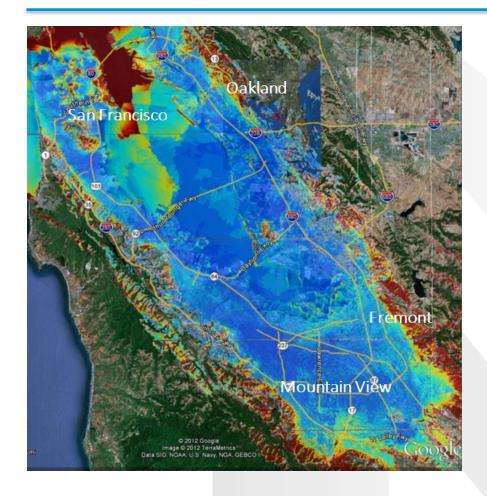
Industry is headed towards the need for GPS grade phase and frequency, Indoors! A seamless GNSS Augmentation solution would be highly desirable!



Terrestrial GPS Augmentation - Desired System Characteristics & Applicability to Time & Frequency

	Positioning	Time & Frequency	
Applications	 E-911 Accuracy by FCC-15-9A1 ruling: outdoor and indoor Horizontal: 50 m (40% by 2017, 50% by 2018, 70% by 2020, 80% by 2021), vertical: 3 m First responder Asset tracking Location Based Services 	 Telecommunications, for example small-cell sync Financial network synchronization Datacenter synchronization Power grid 	
	High reliability, encryption/authentication		
Desired characteristics	Coverage: sub-urban, urban, indoor		
	Minimal device impact (cell phone/tablet): acceptance GPS-like signal structure, but not on, or near L1, L2, L5		
	Low power, first fix in seconds		
cha	Passive: no network saturation, privacy		
Scalable: metropolitan areas / building struct		/ building structures	

NEXTNAV


NextNav Metropolitan Beacon System: Terrestrially-Based 'GPS'

- Dedicated 3D positioning system, not a communications system
 - Uses NextNav owned, licensed spectrum
 - 8MHz BW
 - Spectrum covers 93% of US pops
- Long-range broadcast transmitters; deployable solutions possible
- Based on GPS principles synchronized transmitters and time-of-flight measurements
- Encrypted signal available to authorized users throughout footprint, no capacity limitations
- Significantly exceeds FCC E-911 indoor location mandate of 50m, 80% of the time in 3rd party trials

Core of NextNav solution is essentially a network of terrestrial "satellites", with fixed sites broadcasting from shared roof-top and tower infrastructure

Wide-Area System Creates Extensive Coverage Zones

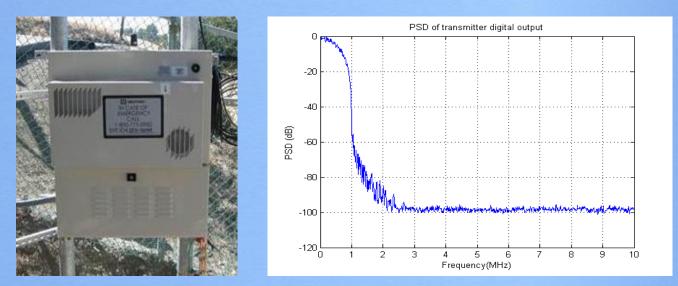
- Consistent performance across Bay Area pilot market - ~2,500 sq. km over SJC and SFO CMAs
- Broadcast system with no capacity limits
- Sites are managed via low-bandwidth radio links, and 30W Tx utilizes standard "wall" power
- Bay Area network is designed for robust inbuilding penetration – 30dB of loss embedded in planning model
- Planning model takes into account DOP; i.e., a site that does not have adequate angular separation is discounted
- In-campus solutions available for international markets
- Timing coverage extends well beyond positioning
 - Only one beacon required for timing

GNSS/MBS for Absolute Time & Frequency Synchronization

	GNSS	MBS	
Frequency	1575 MHz	925 MHz	
Power	50 Watts	30 Watts	
Constellation	MEO satellites	Terrestrial transmitters	
Coverage	Global	Local / regional	
Outdoor Indoor Deep Indoor	 ++ (high-sensitivity GNSS) 	++ ++ ++ (by design)	
Rx cost / integration cost	++	++ (negligible added cost for MBS-GNSS hybrid)	
Other Notes	Low power signal, vulnerable to jamming and spoofing	"Sky-free" High-power Authentication / Encryption	

3GPP Support for TBS/MBS

- TBS is the generic class of Beacons defined in 3GPP; MBS is the NextNav version
- MBS standardization implies the following
 - Air interface between MBS beacons and UE ightarrow Defined by ICD



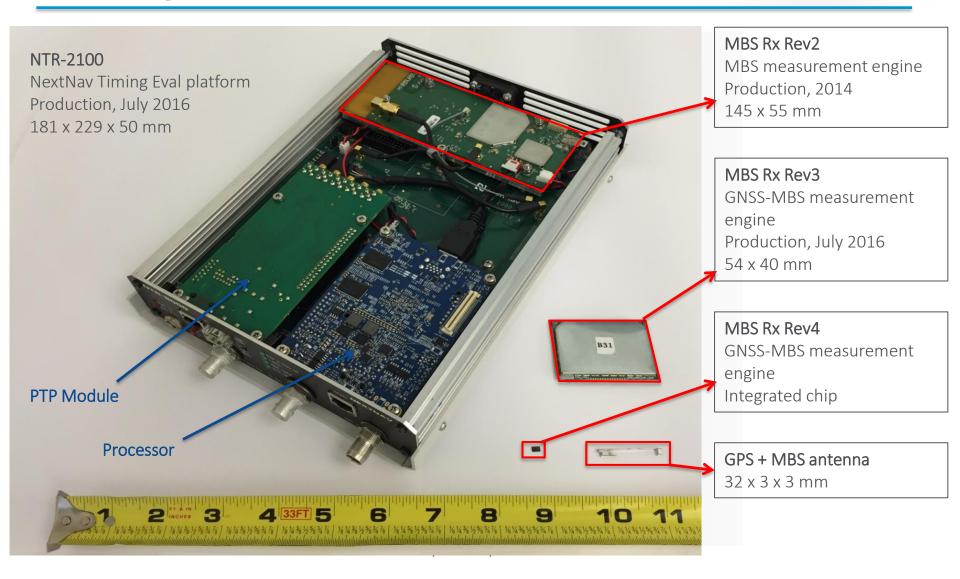
- Messaging between Carrier Network and UE ightarrow Defined by 3GPP
- Interface Control Document (ICD) published in two open fora
 - National Public Safety Telecommunications Council (NPSTC)
 - ATIS, the US Signatory to 3GPP (<u>www.ATIS.org</u>)
- 3GPP Release 13 supports for TBS/MBS
- MBS also supported by OMA in SUPL 2.1

MBS Transmitter

- Redundant configuration (Master/Slave) per transmitter
- Battery backup (per transmitter)
- Multiple transmit sites (system level redundancy)
- Typically co-located in cell-tower or roof-top installation

MBS Transmitter Synchronization

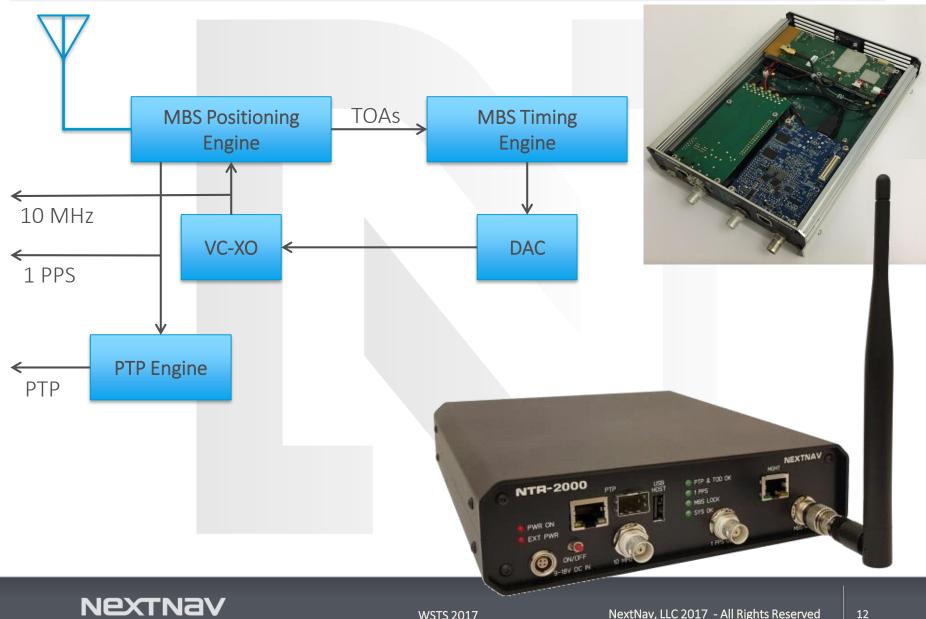
- MBS beacon primarily use GNSS in conjunction with a Rb oscillator for synchronization
- Relative beacon sync: MBS beacons have capability of listening to each other and therefore performing relative sync through means such as MBS Two-Way Time Transfer (MBS-TWTT)
- In the case of GNSS outages, different options are possible:
 - Rb coasting within the beacon <1µs/48 hrs
 - MBS-TWTT to maintain relative sync (for positioning) or transfer of GNSS time from beacons with healthy GNSS
 - Cesium oscillator, TWSTT or other absolute time sources: can be used to provide synchronization periodically to a subset of MBS beacons that can be transferred to the other beacons using MBS-TWTT



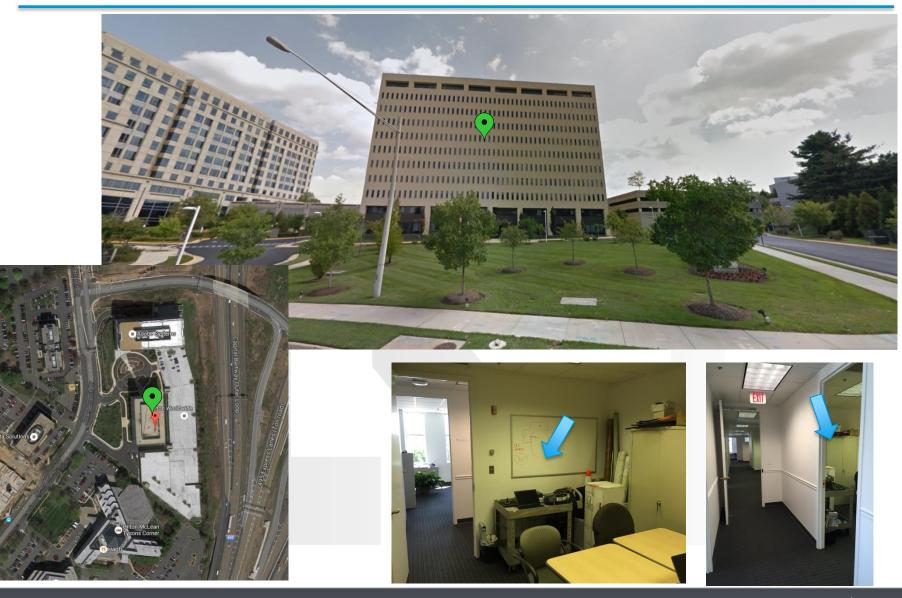
MBS Receiver Characteristics

- Signal looks like a GPS signal in a different frequency band
 - Engineering samples available now
 - Chip/module sizes similar to GPS
 - Hybrid GPS + MBS IC
 - Mass market GPS IC provider
 - Low power consumption
- Signals are strong
 - High SNR, even deep indoors
 - Multipath can be extreme
- High SNR allows for advanced signal processing
 - Passive/Integrated antenna would suffice to pick up the signals
- Stationary timing receiver at known location:
 - Can deploy additional techniques not necessarily available to positioning user:
 - Only single beacon required for timing fix, multiple beacons provide redundancy and RAIM capability
 - Validation of signal consistency over time increases robustness

NextNav MBS Positioning Rx generations & NTR Timing Evaluation Platform


NextNav

Telecom Phase and Frequency Requirements in LTE Networks

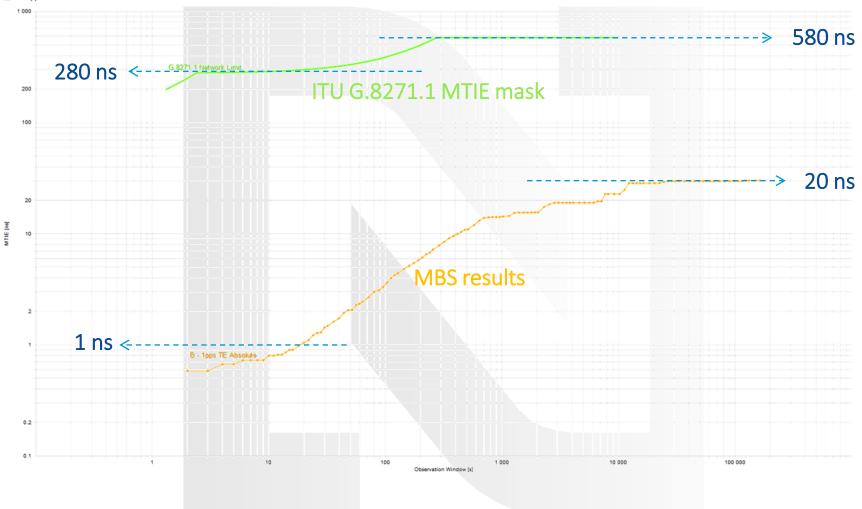

Application	Frequency: Network/Air	Phase	Note
LTE-TDD	16 ppb/50 ppb	± 1.5µs	< 3km cell radius
		± 5 μs	> 3km cell radius
LTE MBMS (LTE-FDD and LTE- TDD)	16 ppb/50 ppb	± 10 μs	Inter-cell time difference
LTE-Advanced	16 ppb/50 ppb	± 0.5μs to ± 1.5μs (CoMP) ± 1.5μs to ± 5μs (eICIC)	

NextNav Timing Receiver - NTR

Test 1: Deep Indoors - Office building

WSTS 2017

👝 B - 1pps TE Absolute Date: 2016-09-21 File: channelB.dset Offset Removal Applied: False Zero Offset: 143.333ns



Test 1: Max Time Interval Error (MTIE)

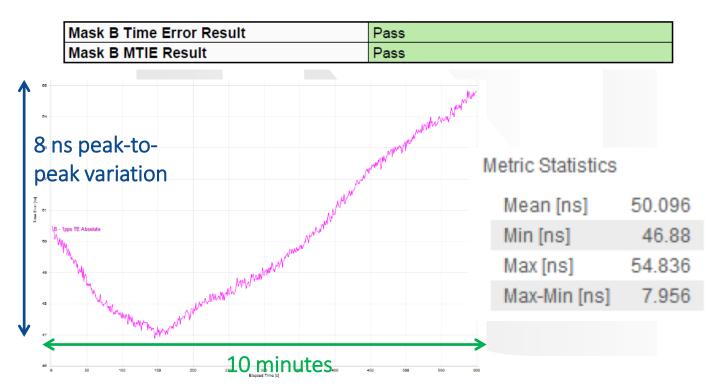
B - 1pps TE Absolute Date: 2016-09-21 File: channelB.dset

NextNav

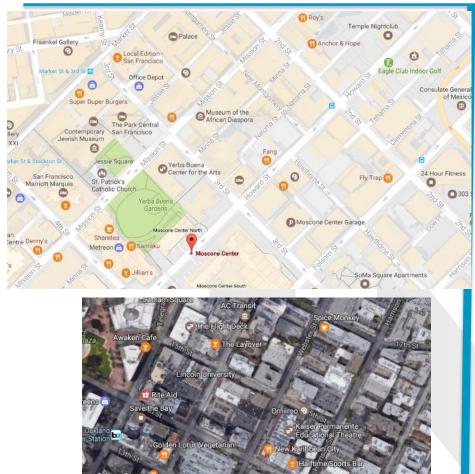
Test 2: Time recovery in Indoor Mall

Location: Tysons Corner Center – Indoor mall, ground floor, food court DUT: NextNav NTR Test instrument: Calnex Sentinel

NTR-2000


Calnex Sentinel in Rb holdover mode

NextNav


Test 2: Tysons Corner Center – Indoor Mall

Report Date	26/09/2016 17:47:25	
Beginning of Test	21/09/2016 04:24:32	
End of Test	21/09/2016 04:34:31	
Instrument Type	Sentinel	
Instrument Serial Number		
Test Duration	00:00:09:59	

All Mask Results	Pass
------------------	------

NextNav

Test 3: MBS timing fix in various buildings

Downtown San Francisco Modern building-steel and glass Window film attenuates GPS			
Floor	GPS Satellites	MBS Beacons	MBS Timing Fix?
В	Ν	.12	Y
2 nd	Ν	>11	Y
6 th	Ν	>11	Y
13 th	Y, with external antenna	>15	γ

Downtown Oakland Older building with masonry exterior

Floor	GPS Satellites	MBS Beacons	MBS Timing Fix?
В	Ν	3	Y
1 st	Ν	>6	Υ
3 rd	Ν	>7	Y
7 th	Y, with external antenna	.12	Υ

Summary

- MBS is a proven technology delivering high precision location & timing in GPS challenged environments
- Availability of a low cost consumer grade UE drives mass market adoption
- Technology designed for mass market applications
 - Mass market Chipsets with MBS capability coming into market from Tier 1 GPS chipset providers
 - Technology standardized in 3GPP (Rel 13) and OMA (2.0.3)
- Successfully demonstrated timing capabilities with major Telecom Operators, Financial Markets and other industries

