Assisted Partial Timing Support: Predicting Time Dispersion

Aka: Optimal Estimation, Prediction, and Ensembling Of Timing Signals

Marc Weiss, Ph.D.
NIST Consultant

Optimal: Outline

- Timing Signal Model
 - Model
 - Power Law Spectra
 - Linear Frequency Drift
- Optimal Estimation and Prediction
- Optimal Ensembling of Signals

Clock/System Model

$$x(t) = x_0 + y_0 t + D \frac{t^2}{2} + \varepsilon(t)$$

where: x(t) = time deviation after time t

systematic or deterministic part

 x_0 = initial time offset

 y_0 = initial frequency offset

D= linear frequency drift

random or stochastic part

 $\varepsilon(t)$ = white, flicker, or random walk phase or frequency modulation, or combinations

POWER-LAW SPECTRA:

There are many types of "Random"

The Standard Deviation may not mean anything.

TDEV Reveals the Noise Type

Linear Frequency Drift

Estimating Linear Frequency Drift: Motivation

- Linear Frequency Drift Biases AVAR, MVAR and TVAR
 - Affects characterization of stochastic noise type
 - Affects confidence intervals
 - Alternative: use Hadamard variance
- Time Prediction Error Grows as τ²
- Optimal Estimate of Drift a Function of Noise Type
 - Depends on judgment
 - Requires extrapolation of variance to data length

Optimal: Outline

- Timing Signal Model
 - Model
 - Power Law Spectra
 - Linear Frequency Drift
- Optimal Estimation and Prediction
- Optimal Ensembling of Signals

Optimal Prediction Theory

- Optimal estimate/ prediction of White PM is the Mean
- General Method
 - Filter data to make it White PM
 - Take Mean
 - Reverse filter the mean

Optimal Predictors by Noise Type

Expected Time Dispersion: Optimum Prediction is Based on Noise Types These expressions are in terms of the Allan Deviation

Typical Noise Types α Name		Optimum Prediction $x(\tau_p)$ rms ^a	Time Error: Asymptotic Form
2	white-noise PM	$\tau_a \cdot \sigma_a(\tau_a)/\sqrt{3}$	constant
1	flicker-noise PM	$\tau_p \cdot \sigma_{\gamma}(\tau_p)/\sqrt{3}$ $\sim \tau_p \cdot \sigma_{\gamma}(\tau_p) \sqrt{\ln \tau_p/2 \ln \tau_0}$	$\sqrt{\ln \tau_p}$
0	white-noise FM	$\tau_p \cdot \sigma_s(\tau_p)$	$\tau_{p}^{1/2}$
- i	flicker-noise FM	$\tau_p \cdot \sigma_{\gamma}(\tau_p)/\sqrt{\ln 2}$	
-2	random-walk FM	$\tau_p \cdot \sigma_s(\tau_p)$	$\frac{\tau_{8}}{\tau_{3}^{3/2}}$

An Example of Optimal Prediction on Kishan's Simulated, Filtered Data

TDEV at tau = 2ⁿ Showing Uncertainty

Kishan Simulation -- Filtered

TDEV at All tau Values: No evident Periodic Behavior

Kishan Simulation – Filtered Noise Types Automatically Detected

m	Tau(s)	Deviation	Lower	Upper	Noise Type
1	100	81.0	73.4	90.6	White PM
2	200	77.2	69.7	86.7	White FM
4	400	96.9	84.2	11.5	Flicker PM
8	800	87.4	72.0	11.2	Flicker PM
16	1600	82.1	62.6	12.2	Flicker PM
20	2000	82.9	66.6	99.2	Flicker PM
40	4000	89.5	63.2	115.9	Flicker PM
80	8000	37.7	19.7	55.7	Flicker PM

Allan Deviation for Optimal Prediction Equations

Kishan Simulation — Filtered And Expected dispersion

Optimal: Outline

- Timing Signal Model
 - Model
 - Power Law Spectra
 - Linear Frequency Drift
- Optimal Estimation and Prediction
- Optimal Ensembling of Signals

Optimal Ensembling

- With two clocks: Phase lock loop
- With multiple clocks: Time Scale Algorithm

Slave averages master signal over the lock time

Fundamental Properties

$$y = \frac{v - v_0}{v_0} \quad x = \int y' dt' = \frac{\phi}{2\pi v_0} \quad y$$

Measures

Ensembling two oscillators: phase lock

With Multiple Signals: Proper Time Scale Algorithm Takes the Best of Each Clock

Conclusions

- Determining the dominant noise types allows for optimal prediction
 - Prediction of time error
 - Best estimate of drift
- Optimal Ensemble Time only gets better with more clocks – even a bad clock only improves the ensemble

Extra Slides

Adapted from Tutorial on Quartz Crystal Resonators and Oscillators by John R. Vig

Time Dispersion of Various Clocks

MVAR/AVAR

Figure 2. Ratio of mod $\sigma_y^2(\tau)$ to $\sigma_y^2(\tau)$ as a function of the number of time samples averaged together to calculate either variance.