Drivers for High Accuracy and Deterministic Time

www.calnexsol.com

Calnex

Agenda

- 5G: Uses and Implications
- Fronthaul Networks
- Indoor Positioning
- Industrial Automation
- Internet of Everything

5G Requirements

What is 5G?

Mobile Operators vision:

- Anything that's better than the current offering that can be branded as "5G"
- Current LTE-Advanced offering is just carrier aggregation, already being branded 4.5G in some markets
- Quite likely that anything beyond Carrier Aggregation (CA) will be marketed as 5G!
 - E.g. elCIC, CoMP, MBMS

What are the uses?

Enhanced Mobile Broadband

From ITU-R M2083.0, "IMT Vision"

What is the performance?

IMT-2020 – the ITU's vision of "5G", to roll out in 2020

IMT-Advanced (LTE, 4G) IMT-2020 (5G), relative to IMT-Advanced

What are the implications?

- Peak data rate of 20Gbit/s
 - High speed backhaul of 25Gbit/s or more
- User experienced data rate of 100-1000Mbit/s
 - Co-operative processing and interference management
- Connection density of 1M connections/km²
 - Requires dense small cell deployment
- Latency < 1ms
 - Distributed architecture, data processing and switching at the edge
 - Fronthaul, distributed radio units with co-located baseband and switching

Fronthaul Networks

Fronthaul Architecture

- IEEE1904.3 "Radio over Ethernet"
- IEEE802.1CM "Time Sensitive Networking for Fronthaul"

Fronthaul sync requirements

Inter-site Carrier Aggregation (CA)

- CA bonds two carriers together into a single channel
 - For two non-adjacent carriers in the same band, or two carriers in different bands, frame alignment must be better than 260ns
- But it's always been that, even in 4G. So what's new?
 - In 4G, aggregated carriers were transmitted from the same antenna, generated by the same eNodeB
 - In 5G fronthaul architecture, carriers may be transmitted from separate radio units, connected over an Ethernet fronthaul
- 260ns frame alignment translates to ±130ns from central clock

Fronthaul sync requirements

Co-ordinated Multi-Point (CoMP)

- CoMP is a family of technologies
 - Joint Transmission or Reception
 - Co-ordinated Beamforming
 - Dynamic Point Selection
 - Dynamic Point Blanking
- Joint transmission requires frame alignment of ~0.5us at the UE (*i.e. phone or user device*)
 - Translates to around 250ns at the radio unit

)) Dynamic switching (((C)))

Dynamic Point Selection

Dynamic Point Blanking

Over-the-air synchronisation

- Radio Interface Based Synchronisation (*RIBS, 3GPP 36.898*)
 - "Listen" to the signal from a neighbouring cell, and align transmission
 - Signal propagation delay estimation looks a lot like PTP over the air!
 - Methods still under study, not finalised yet

Indoor Positioning

Indoor Positioning

- For outdoor positioning there is GPS
 - Precision GPS vendors claim centimetre level accuracy
 - Applications include:
 - Precision Agriculture GPS controlled ploughs, harvesters etc.
 - Stock control container location in a shipyard
 - Autonomous vehicles
- But what about indoors?
 - Warehousing where is my stock?
 - Autonomous vehicles in underground parking lots
 - Sensor networks where is the sensor?
 - Emergency location in a large building, it may take a long time to find someone needing emergency assistance
- Competing technological solutions
 - WiFi, Bluetooth, 5G all looking at satisfying indoor positioning needs

Positioning Requirements

- E911: within 50m horizontal accuracy for 80% of emergency calls
 - Requires time synchronization to better than 150ns
- Targets for 5G "Higher Accuracy Positioning": *
 - Accuracy level of <1m in 95% of the service area
 - Network-based positioning in 3D space to between 10m and <1m in 80% of situations
 - If implemented using OTDOA, requires time synchronization to better than 3ns
- OTDOA not the only technique for positioning, but any positioning solution requires time to some degree

Industrial Automation

Cyber-physical systems

- Main requirement: deterministic latency
 - Low latency is nice, but deterministic latency is key
- Internet was created to be "as dumb as possible"
 - Intelligent end-points, dumb network
 - Little or no state to be held in network, just route as fast as possible
 - Network performance is variable, "best effort"
- Time-aware systems
 - Intelligent networks, accurate time everywhere
 - Use time for scheduling and routing decisions
 - Accurate time is integral to the performance of the intelligent network
 - Network performance is deterministic

Deterministic networking

- Scheduled low-latency windows
 - "Railway signalling model": clear the tracks for the high-speed train
- Frame pre-emption
 - Allow large, lower-priority packets to be divided in two
 - Reduces the guard-band required to ensure the low-latency window isn't impeded
- Cut-through switching
 - Start switching and forwarding packets before they have been completely received
 - Reduces latency associated with "store-and-forward" of large frames

Internet of Everything

Information overload

- Information is important, timely information is key
 - Much information loses its importance with time
 - Sensors, warnings, alarms timing of data is imperative, to allow intelligent decision making
 - Every piece of information must be timestamped to some level of accuracy
- Example: autonomous vehicles
 - Knowing another vehicle was on a head-on collision course a few seconds ago (or a few milliseconds ago) is too late
 - Knowing it is on a head-on collision course NOW is important
 - Of course, in a computer system, NOW is never "now", it is only "recently"
 - Each application will have it's own tolerance for how recently "NOW" can be

Conclusion

- Time is the enabling item behind a large number of different applications
- Solomon put it this way:
 - "There is a time for everything, and a season for every activity under the heavens. A time to be born, a time to die..."
- It's not yet time for the sync community to die

INTEGRITY

PTP TIME MEASUREMENTS REQUIRE TRUE PRECISION

Tim Frost, Strategic Technology Manager tim.frost@calnexsol.com

www.calnexsol.com +44 (0) 1506-671-416

