
TIME AWARE APPLICATIONS:
PAST, PRESENT AND FUTURE

www.calnexsol.com

John C. Eidson

WSTS-2014

• When NTP and GPS made reasonably accurate time
readily available, Barbara Liskov challenged the
computer science community to “rethink” current
algorithms and techniques. (Liskov, Barbara. "Practical uses of
synchronized clocks in distributed systems." Distributed Computing 6, no. 4 (1993):
211-219}

• Sadly the response has been poor.

• There have been many others that noted the
difficulties in controlling temporal properties
especially in distributed systems. (e.g. Stankovic, John A.
"Real-time computing system: The next generation." (1988)., Insup Lee, Susan B.
Davidson, and Victor Fay-Wolfe. "Motivating time as a first class entity." (1987).,
Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed
system." Communications of the ACM 21, no. 7 (1978): 558-565.}

A challenge from the past

2

Of course- and extensively:

• Computer file and database systems (Hector Garcia-

Molina, Jeffrey D. Ullman, and Jennifer Widom. Database system
implementation. Vol. 654. Upper Saddle River, NJ:: Prentice Hall, 2000.)

• Security protocols (B. Clifford Neuman, and Theodore Ts'o.

"Kerberos: An authentication service for computer
networks." Communications Magazine, IEEE 32, no. 9 (1994): 33-38.)

• Safety-critical systems (Kopetz, Hermann. Real-time systems:

design principles for distributed embedded applications. Springer, 2011.,
Kopetz, Hermann, et al. "Distributed fault-tolerant real-time systems: The
Mars approach." Micro, IEEE 9.1 (1989): 25-40.)

So has explicit time been used in the
past?

3

Safety-critical systems- becoming even more
important: power generations, transportation,
many industrial processes.

Time is heavily used today in safety-
critical systems

4

More examples of current applications

5

• Both time and value must be correct

• Bounded interaction with environment

• Composable subsystems=> time-triggered
architecture

• Dependable => error containment

• Certifiable

*from Kopetz, Hermann. Real-time systems: design principles for

distributed embedded applications. Springer, 2011.

Key learnings from safety-critical design*

6

Not all applications have safety-critical
requirements, e.g. T&M typically does not, nor
are time-triggered architectures appropriate for
all applications.

Other traditional uses of time in systems

7

Example: US Navy
CASS test system: not
safety-critical but still
has significant timing
issues

Hull Vibration Monitoring System
Pulse DAQ-H Central Control SystemNetwork Router

Distributed LAN-XI A/D Front-Ends
COTS Accelerometers

Precision Time Protocol Synchronization (PTP)

Power over Ethernet (PoE)

Data Transfer from LAN-XI Systems

Data Storage and Analysis

Interactive Customer User Interface

Automated and user initiated scans

Ability to listen to any signal

Warning/Alarms

Troubleshooting

Dual 24bit A/D Technology (160dB Dynamic Range)

Extremely low Noise Floor

Single LAN cable operation (PoE, PTP, Data Transfer)

1000+ Channels in a single system

Off the shelf product

Designed for Health Usage Monitoring Systems

(HUMS)

High Frequency, High Temperature

EMI/Radiation Resistant

Embedded Hydrophones

Cavitation Noise

Integration of permanent hydrophones (Monitoring

of Cavitation Noise)

Listening to signals

Slide courtesy of Bruel and Kjaer

• Next several slides discuss Google’s Spanner
database as an example of an innovative use of
time*

• Spanner is a world-wide distributed database
• Achieves external consistency, i.e. users see

same order as internal order
• Based on replacing reasoning about commit

order with reasoning about timestamp order

*From: Wilson Hsieh, et.al. “Spanner: Google’s Globally-Distributed Database”, OSDI-
2012

Looking forward- Google’s Spanner

9

“TrueTime”

• Global timescale with bounded uncertainty

• Same purpose as Kopetz’ sparse timescales

• Allows unambiguous ordering of events

time

earliest latest

TT.now()

2*ε

10

Example of Timestamps Commit Reasoning

T

Pick s = TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

average ε

Commit wait

average ε

11

Google’s conclusion:
• Large scale no longer implies weaker

semantics!
• Enabled by use of “True Time”

So why aren’t people rushing to use
explicit time to develop applications?

• Perhaps they don’t need to?, or

• Hard as real-time applications are (and they
are hard) we can make do with the current
techniques

• Still one wonders about future application
requirements

12

Things you can’t easily do today:

• Write a program that closes switch A at 10AM ±1μs (or
even 100μs ±1μs after switch B is closed).

• Find out how long it takes to execute a piece of code.

• Order external events in a distributed system.

• Compose two components and understand the
temporal semantics of the combination.

Current level of “support” for use of
explicit time

13

To cite a few examples:

• Esterel, Lustre (SCADE), and Signal (synchronous
languages)

• Real time Java, concurrent C, Ada …

• Giotto, TTP, TTE (time triggered)

This is not because people have not
tried to provide support!

14

Interesting European project*.

• Mapped from Simulink to SCADE to TTA

• At least one microprocessor target supported.

• Its fate: “Frankly speaking we do not see a very high
interest from customers”

* Caspi, Paul, et al. "From Simulink to SCADE/Lustre to TTA: a layered approach

for distributed embedded applications." ACM Sigplan Notices. Vol. 38. No. 7.
ACM, 2003.

This is not because people have not
tried to provide support!

15

There are a number of development environments that
have some temporal semantics:

• MathWorks (“Simulink Coder”), LabVIEW…

• Some industrial systems: e.g. Siemens Step7, TTTech
toolsets

This is not because people have not
tried to provide support!

16

“ Nine technical leaders of the IEEE Computer Society joined
forces to write a technical report, entitled IEEE CS 2022,
symbolically surveying 22 potential technologies that could
change the landscape of computer science and industry by the
year 2022.”

• 156 pages

• The word “time” is mentioned 61 times

• Typically in a context like “time to market“

• Only once as a critical technology “hard real-time
<multicore> architectures with local memory and their
programming “

Maybe others will solve the problem
IEEE CS 2022

17

What about the future?

18

Who knows? But there is an effort to find out.

• Based on a white-paper : “The Case for Cross Disciplinary
Research on Time Aware Applications, Computers and
Communication systems (TAACCS)”
http://tf.nist.gov/seminars/WSTS/TAACCS/TheCaseforTAACCS.pdf

• Proposed collaborative effort between industry, academia, and
government

• Target disciplines: Oscillators and clocks, time-transfer, time-
aware networks, timing support for applications, development
environments, and applications.

• Steering committee

• Initial meeting

Nascent effort beginning this Friday

19

http://tf.nist.gov/seminars/WSTS/TAACCS/TheCaseforTAACCS.pdf

• Things are tractable in the area of safety-critical systems

• We do not have general techniques for composing time-aware
components

• Design and implementation with guaranteed temporal behavior
remains elusive outside of a few very restricted environments

• There are lots of ideas floating around but some collaborative
effort is needed.

Conclusions

20

21

Hollywood’s finest in attendance!

Don’t forget …

Wednesday Night is Whisky Night

