### The Need for Speed and its impact on Sync.







## 1 The need for Speed and its impact on Sync.



### < Contents

- The requirements for speed, high data rates, increased bandwidth
- □ The impact for the oscillator requirements to satisfy high data rates
- Frequency multiplication and phase noise
- High frequency oscillators for low jitter
- Subsequent possible impact on Oscillator performance for Sync requirements
- Meeting the challenge, Oscillator technology/advances, Examples

## The need for Speed and its impact on Sync.



- Sy speed we are referring to high speed data rates.
  - □ Required to satisfy the exponential rise for greater and greater data rates.
- By Sync. we are more specifically referring to the greater demands for time synchronisation.
  - Microsecond and below phase/time stability requirements
- Higher bandwidth, requires higher modulation rates or more complex modulation schemes
  - Ethernet
    - Evolving from 1Gbit and 10Gbit to 25Gbit, 100Gbit and even 400Gbit.
  - □ High speed Optical communication, Coherent transceiver/receiver, 100Gbit
  - □ Air interface more complex modulation schemes, 16, 64 to 128 QAM
- Imposes Requirements on the oscillator/oscillator chain
  - □ Requirements for phase/time stability of <~100fs region over times of <~ 100us
  - Oscillator chain, frequency multiplied up to the carrier/modulation rate.
  - Requirement expressed in terms of Jitter or EVM specification.
  - □ Both an integral of phase spectral density over a bandwidth

## **Higher QAM Rates Require Better PN**



- **▼ One way to increase bandwidth (Download/Upload speeds) is to increase QAM**
  - HSPA 16 to 64 QAM depending on signal strength
  - □ LTE 16 to 64 QAM depending on signal strength
  - □ LTE-A up to 128 QAM
- As the QAM rate increases the more data they embed into the signal, the more precisely they have to measure the phase of each carrier signal
  - □ This means that the phase noise(typically 100Hz to 100kHz) must be improved to meet the Error Vector Magnitude (EVM) masks.

- □ e.g. EVM definition from 802.11b/g
- Poor phase noise means it's impossible to distinguish one code from another and the system is forced to reduce the QAM rate

where [n] = measurement at

Q err = Q Ref - Q Meas

the symbol time

IQ measured

Phase



### Error Vector Magnitude - Example





More and more bandwidth = faster download/upload



Harder to

decode





**Good Phase Noise** 

**Easier to decode** 

### Jitter specification – SyncE





#### **▼** Often Specified as peak-peak e.g. G.8262

- □ But normally measured as RMS jitter, for oscillator. BER 10<sup>-9</sup> implies Pk-Pk ~ 12 \* RMS
- Total pk-pk jitter, transmit and receive, needs to be ~ less than 0.5UI (unit interval)

#### 25G and 100G

- Requirement scales with Unit interval
- Jitter specification for 25G and 100G needs to be 40 and 100 times better than 1G requirement
- ~1ps and 250fs
- Base oscillator contribution needs to be significantly less than this.

Table 6 - Synchronous Ethernet jitter generation for EEC-Option 1 and EEC-Option 2

| Interface              | Measuring filter  | Peak-to-peak amplitude (UI) |
|------------------------|-------------------|-----------------------------|
| 1G<br>(Notes 1, 2, 4)  | 2.5 kHz to 10 MHz | 0.50                        |
| 10G<br>(Notes 1, 3, 4) | 20 kHz to 80 MHz  | 0.50                        |

NOTE 1 – There is no specific high-band jitter requirement for synchronous Ethernet. The relevant IEEE 802.3 jitter requirements shall be met in addition to the specific synchronous Ethernet wideband jitter requirements specified in this table. [IEEE 802.3] defines measurement methodologies. The applicability for those measurement methodologies in a synchronization network environment is for further study.

NOTE 2 - 1G includes 1000BASE-KX, -SX, -LX; multi-lane interfaces are for further study.

NOTE 3 - 10G includes 10GBASE-SR/LR/ER, 10GBASE-LRM, 10GBASE-SW/LW/EW; multi-lane interfaces are for further study.

NOTE 4 - 1G: 1 UI = 0.8 ns

10G (10GBASE-SR/LR/ER, -LRM): 1 UI = 96.97 ps 10G (10GBASE-SW/LW/EW): 1 UI = 100.47 ps

### Oscillator chain - Multiplying the frequency up



#### ✓ Idealised example

- Locking high frequency VCO to low frequency crystal oscillator
  - Example 200MHz output from 20MHz TCXO and 2GHz VCO
    - TCXO 20MHz
    - TCXO \* 10
    - VCO 2 GHz
    - VCO /10
    - 200MHz PLL output

| Oscillator | Jitter 10kHz-20MHz (ps) |
|------------|-------------------------|
| TCXO       | 0.89                    |
| VCO        | 1.41                    |
| PLL        | 0.17                    |



**PLL Phase Noise** 

### Multiplying the frequency up



- Jitter stays the same with idealised frequency multiplication/division.
  - □ Phase noise increases 20log(M) ideally. Where M is frequency multiplication.
  - Integral of noise over a bandwidth, is in radians.
  - converting from radians to time is scaled by frequency, so jitter remains the same.
- Lower frequency oscillator only contributes up to loop bandwidth
  - □ Up to ~ 100kHz on previous example
  - □ Lower loop bandwidth, higher Q VCO, reduces jitter of composite PLL output

### May have multiple loops

- GHz VCO, locked to high frequency VCXO, locked to low frequency TCXO/OCXO
- Trend to save costs to remove high frequency VCXO and go directly from TCXO/OCXO to GHz VCO

### Bow to improve Oscillator Jitter



#### Higher Frequency Oscillator.

- Noise floor stays low, as oscillator frequency increases, so less jitter.
- Jitter 10kHz to 20MHz
  - 20MHz Osc, 0.89ps
  - 40MHz Osc, 0.5ps
- Integral of Phase noise.
  - Jitter bandwidth matches noise floor
  - Double sideband or phase spectral density = 2\*single sideband (L(f))
  - $\Box$  Integral gives noise relative to 1 radian, need to multiply by period/2π to convert to Jitter in seconds.
- Oouble the Oscillator frequency with the same noise floor results in half the jitter.



#### 9

## Challenges with higher frequency oscillators



#### Increasing Quartz frequency- by making the Quartz thinner

- □ Thinner Quartz, more susceptible to mass transfer and Stress
  - Increased aging and hysteresis
- □ Also tends to lead to a smaller Quartz blank. Relative size tolerances harder to control.
  - Increased perturbations due to interfering modes.
  - Can take a long time to perfect a new design, especially for TCXOs.
- □ Angle tolerance on thinner blank is more difficult, co-planarity etc.
  - Increased tolerance on the frequency temperature slope at oven set point, degrades performance in OCXO.

#### **▼** Using overtone Modes:-

- Normally fundamentals for TCXO's and 3<sup>rd</sup> Overtones for OCXO's
- □ Third Overtone (traditionally used for OCXO's)
  - Three times thicker for same frequency as fundamental, better aging
  - Higher Q, better short term stability
  - But nine times less pullable
    - TCXO and especially VCTCXO devices require extra external components, hyper-abrupt varactor, inductors and larger crystals.
    - Larger oscillator packages and more costly.

### Impact on Sync. from oscillator perspective



- So we have 10's of femtoseconds stability over 10's of microseconds at one end and 1
  microsecond stability for hours at the other end of the stability spectrum
- The requirement for both time and frequency synchronisation
  - □ Frequency stability in the few ppb range
  - □ Requirements for sub microsecond stability over time periods of minutes to hours
  - Requires higher stability oscillators
    - lower aging for time holdover
    - Better frequency temperature stability for longer time constant synchronisation loops.
      - Loop bandwidth moving to 50 to 100mHz for IEEE1588 supported networks
      - Loop bandwidth requirements for 1mHz or less for unsupported or partially supported networks
- But Higher frequency oscillators are naturally less stable
  - Aging increases at least linearly, probably more with frequency
  - Poorer frequency temperature stability
    - TCXO perturbations
    - OCXO angle tolerance
  - □ Higher load, supply, acceleration sensitivity etc.

### 11 Meeting the Challenge



#### What is required:-

- □ Need to either reduce the jitter of high stability low frequency oscillator
- Or Increase stability of high frequency low jitter oscillator
- Or both

#### < How:-

- □ Redesign the TCXO or OCXO ASIC, second/third generation ASIC's
  - Reduces noise floor from ~-150dBc/Hz to nearer ~ -160 dBC/Hz, jitter reduction~ 3 times
- □ Enhance stability with digital control and processing.
  - Digital temperature compensation on top of analogue compensation/control
  - Digital aging compensation, requires reference or aid of system
- Better PLL chips
- □ Modules incorporating low noise high stability oscillator, digital control and low noise frequency multiplication PLL.

### New generation TCXO ASIC



- Circuit redesign and capacitors added for compensation filtering and power supply noise reduction
- Note:- CMOS Buffer converts amplitude noise on the power supply to phase noise on the signal
  - Speed of buffer gate is dependent on supply voltage
  - Variable delay through buffer gate
  - Creates white phase noise
  - So noise floor degrades
  - Jitter increases





### 13 Next generation Miniature OCXO ASIC



 Example of miniature OCXO ASIC development shaded area shows previous typical noise for the same 20MHz fundamental strip crystal. Green measurement is next

generation ASIC





### Digital enhancement of analogue system





- ← High resolution digital frequency control
  - □ Frequency step size should be similar magnitude or less than the noise, 10<sup>-11</sup> to 10<sup>-12</sup>
  - □ Implies need for 20 bit monotonic DAC (1.048576\*10<sup>6</sup> steps)
- For temperature compensation medium resolution digital temperature measurement
  - □ 12 to 16 bit ADC
  - □ Needs to measure the effective oscillator/crystal temperature, not always the same as ambient.
    - OCXO requires the internal crystal temperature, ~proportional to power dissipation.
    - TCXO needs the temperature sensor closely coupled.
- For Aging compensation, a frequency reference is required
  - Can be implied from frequency adjustment record, when device is in locked mode
  - □ Calculated from comparing to supplied frequency reference, when locked.
    - Needs to be aware of system state, locked, holdover, when to go into holdover mode.

### System Compensation vs Oscillator Level



- Some temperature and/or aging compensation can/has been done at system level
- Advantages of system level approach
  - □ For aging, particularly the system has effective record of oscillator frequency error with time.
  - Information on locked/holdover mode, quality of service.
- Disadvantages of system level approach
  - Difficulty separating aging and temperature effects.
    - Ambient temperature not a good measurement of OCXO crystal temperature
      - o Airflow effects, change in airflow can be equivalent to 10 of degrees temperature change.
    - Any thermal lag between temperature sensor and crystal introduces errors during temperature change, dynamic effects.
  - Voltage control of oscillator, very sensitive to
    - Power supply, earth reference errors due to large change in OCXO supply current with temperature.
    - High stability voltage reference required for DAC, and/or temperature coefficient needs calibrating out for optimum holdover.

### Effect of digital post compensation TCXO



compensated

100

### Higher frequency crystals tend to suffer from perturbations

- Example (blue line)shows frequency excursion after analogue compensation, large perturbation ~ +/- 0.75ppm
- □ Interference from coupled modes
- Adding extra digital compensation
  - Post analogue comp.
  - Green line
- Frequency stability improved
  - ~ +/-0.2 ppm

#### Perturbations move with time!

Coupled mode can age at a different rate to the main mode, causes the perturbation to effectively move in temperature. Digital post compensation could be severely degraded. If it does not adapt/learn during lifetime.

### OCXO holdover – temperature compensation



#### **Temperature compensation** procedure

- Apply temperature profile
- Evaluate frequency variation
- Then apply digital compensation algorithm



Temperature





■ But…Oscillator hysteresis limits the residual error



### OCXO holdover –Ageing and temperature compensation



- Frequency stability over time, represented by Allen Deviation.
  - □ Sub 10<sup>-11</sup> region over hours, achieved with digital ageing and temperature compensation



#### 19

### **Oscillator Module**



#### Module incorporating

- □ High resolution Digital Frequency Control (I2C/SPI)
- □ High stability TCXO or OCXO
- Low noise synthesizer with Low jitter outputs
  - <300 fs 12k-20MHz</p>
  - Multiple outputs
  - Single sided and differential output types

### Guarantees Higher Performance

- Reduces inter-component contributors to noise and frequency instability
- □ Tested integrated performance

#### Enables digital enhancement

- Temperature compensation
- Ageing compensation



#### **Example Configuration Performance**

156.25/125.00/25.00MHz



### Summary



- Combination of low jitter for high data rates and high stability for very good time synchronisation is a challenge
- Advances are being made
  - □ Improved ASIC, crystal and oscillator design.
  - □ Digital enhancement for temperature and ageing compensation.
  - Improved PLL chips
- But stability takes time!!



# rakon

