

Time in Internet of Things....

Anurag Gupta WSTS 2016, June 13-15, San Jose

I was late in sending my picture & bio for the conference website....

So Pat & Marc threatened to put a picture of "Gluten free Vegan Pizza"....

...... With no Cheese or Tomatoes & only veggies.

Repentance...

Innovation by Design

This is how I might have been on the website.....

Repentance...

Innovation by Design

OR given my roots..

Uthappam- A thick, spongy rice pancake with lots of veggies & peppers

- What is Internet of Things
 - IOT and IIOT
 - Brief Comparison
- Structure/Anatomy of (I)IOT networks
- Examples of IIOT applications
- Precision requirements of transferred time
- Protocols for time transfer for IOT/IIOT
- Challenges/Constrains in TT for IoT
- Comparison of TT protocols
- The enabling technologies/ gaps
- Conclusion & Closing thoughts

There are many definitions floating around the Cyberspace

The Definition I like

"The Internet of Things (IoT) is a system of "networked"- interrelated computing devices, machines, objects, people (or animals) that are provided with unique identifiers and the ability to transfer data without requiring human-to-human or human-to-computer interaction."

Further IOT systems can be behaviorally segmented into

- Consumer (or Human) IoT HIoT
- Industrial IoT –IIoT

An interesting discussion on this classification can be found at

http://www.moorinsightsstrategy.com/wp-content/uploads/2013/10/Behaviorally-Segmenting-the-IoT-by-Moor-Insights-Strategy.pdf

Anatomy of IoT network

Sensors & Actuators / leaf nodes

Anatomy of IoT network -II

Sensors & Actuators / leaf nodes

Attribute	ΙΙοΤ	CloT/HloT	
Availability	0.99999 (5 '9's)	0.99 to 0.999 (2 or 3 '9's)	
Product lifecycle	Long-(until obsolete)	Whims of Style/budget	
Human Interaction	Autonomous	Reactive	
Response to failure	Resilient, fail in place	Replace	
Network Access	Generally persistent	Persistent/ intermittent /interrupted	
Network topology	unstructured	Structured	
Switching Costs	low	high	

Examples of HIoT applications

- Examples of HIoT / CIoT
 - Smart watches
 - Exercise tracking
 - IP based entertainment systems
 - Smart Appliances / White goods (Refrigerators etc.)
 - Residential HVAC

- Examples of IIoT
 - Robotics
 - Structural Integrity monitoring (Mech Stress)
 - Industrial HVAC
 - Active , IP based Security Systems
 - Fleet Tracking Systems
 - Professional Medical Systems

Look & Feel:

Highly distributed "Supervisory, Control & Data Acquisition Systems"

Changing the business model

From selling "a" productTO:

Offering Product-Service Hybrids (Reactive → Proactive)

Was	Is/ Shall be	New Services	
Jet Engines / Scheduled Maintenance	Sensor Equipped Engines/ Predictive Maintenance	+ Fleet optimization services	
Tires	Tires with sensors/ Tires as a Service	Fuel Consumption Reduction Service	
Farm Equipment	Farm Equipment with Sensors/ remote diagnostics & optimization	Agricultural information services	

So what has "time" got to do....

Common time forms the basis for

- Data diffusion
- Temporal co-relation of data
- Motion detection, Velocity estimation
- Security (limited use of keys, detection of replay attacks)
- Data consistency
- Concurrency control
- Medium Access control & duty cycling
- Localization(e.g. based on time of flight measurement techniques)

Example* Structural Health Monitoring and Reporting System

* Based on Arms et al.: "Synchronized System for Wireless Sensing, RFID, Data Aggregation, & Remote Reporting", AHS forum 65, Grapevine, TX, 2009

Timing Architecture of SHMR

Precision Requirements

Innovation by Design

It depends on the Application... In above example Frequency -: +/- 3PPM (targeted) Time/ Phase accuracy : 5uS

Electrical Engineer's may remember the "Nyquist Criterion"

Application	Precision Needed	Remarks
Ranging	< 50 uS	e.g. Determining angle of arrival of sound waves
TDMA	50 – 100+ uS	Can increase quickly as number of nodes on a network increase
Fast Physical Systems	< 1mS	e.g. Measurement on Engines/ Turbines
Medium Physical systems	10-500 mS	e.g. Sensors in Automotive applications
Slow Physical systems	1 sec+	Environmental sensors

Time Distribution Protocols

- Telecom/ Instrumentation style
 - PTP (IEEE-1588), NTP......
- Wireless Sensor N/W style
 - RBS- Reference broadcast synchronization
 - LTS-Lightweight Tree Based Synchronization
 - TPSN-Timing-sync Protocol for Senor Networks
 - FTSP-Flooding Time Synchronization Protocol
 - TDSP- Time Diffusion Synchronization Protocol
 - Mini-Sync
 - Tiny-Sync

Major Challenges

- Limited Energy
- Cost
 - Bandwidth limitations
 - Unstable network conditions
 - Limited Hardware capabilities
- Tightly coupled to the target environment
 - Robustness (requirement)
 - Non determinism due to deployment conditions
 - Often retrofitted on to original product.

Protocol/ Author(s)	Accuracy	Energy Efficiency	Complexity	Scalability	Fault Tolerance
RBS	High	High	High	Good	No
Romer's	Low	High	Low	Poor	No
Mock et. al	High	Low	High	-	Yes
Ganeriwal et.al	High	Avg	Low	Good	Yes
Sichitiu & Veerarittiphan	High	High	Low	-	Yes
Time Diffusion Protocol	High	Avg	High	Good	Yes

Based on : Clock Synchronization for W S Ns: A Survey-Sundararaman et.al (UOI, Chicago)

Enabling Technologies (Wish list)

Innovation by Design

• Ultra low power technologies

Semiconductor

✤MEMs

- Deep sleep capabilities
 Low wake up times
- Cheap Clock sources
 - Tighter bounds on stability

- IoT along with Data Analytics presents new opportunities
- The technologies & techniques that enable IIoT applications rely on availability of common time
- However the accuracy & precision needed is varied & application dependent

Questions?

Thank you for your attention

Anurag Gupta anurag@agiitech.com