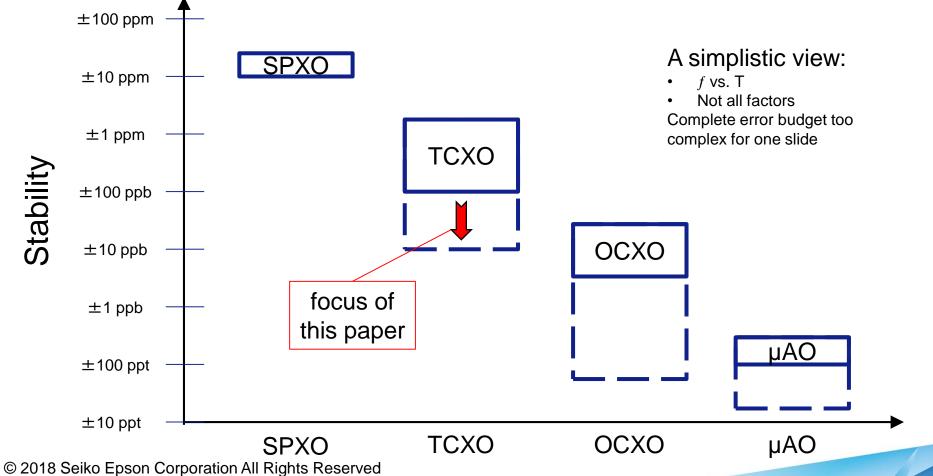
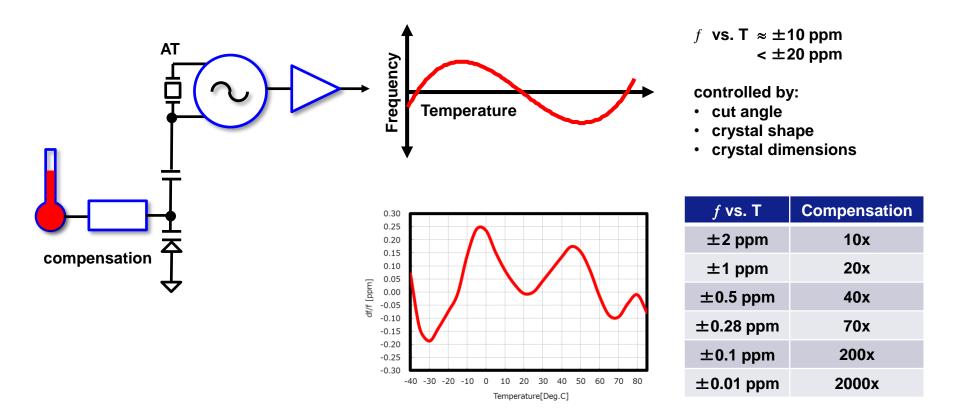


The Next Frontier in TCXO Performance

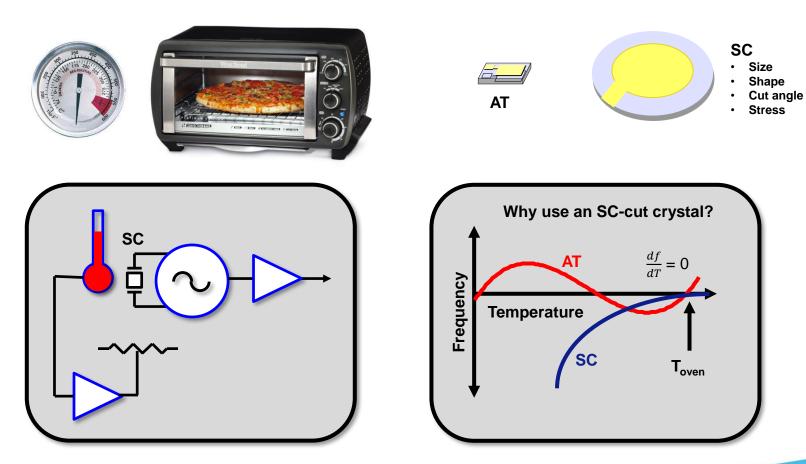
Chris McCormick Allan Armstrong WSTS 2018


June 21, 2018

© 2018 Seiko-Epson Corporation. All Rights Reserved. This entire presentation is copyrighted property of Seiko-Epson Corporation. Any reproduction, publication, display, or reprint in whole or in part is strictly prohibited.



Basics – How a TCXO Works



3

Basics – How an OCXO Works

What We have Today

Performance

	тсхо	осхо	
f vs. T	±0.1-0.28 ppm	±10-50 ppb	
ADEV @ 1s	1E-9	1E-10	
Aging 20-yr	< ±3 ppm	< ±1 ppm	
Aging 24-hr	< ±40 ppb	< ±1 ppb	
Airflow	ok	Much better	

Practicality

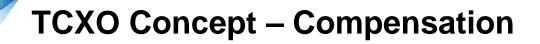
	тсхо	ОСХО	
Size (WxL)	5x3.2	25x22 21x13 14x9	
Size (H)	1.5-2.0	9-12	
Cost	\$\$	\$\$\$	
Power	<< 30 mW	< 1-2.5 W	
Reliability	Much better	ok	

What Else Needs to be Done?

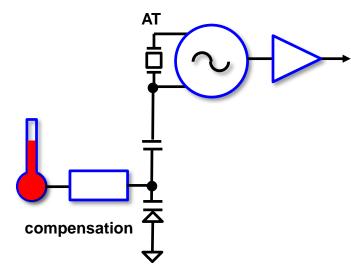
How do we get there?

- Compensation & Calibration Techniques
- SPC & Manufacturing Discipline
- IC Design
- Mechanical & Thermal Design
- Packaging Technology
- Crystal Design & Fabrication Techniques

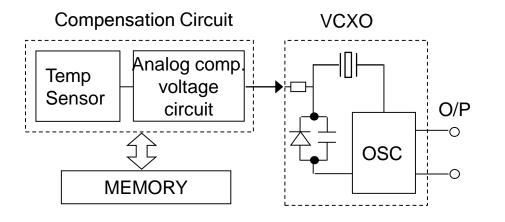
How can we make TCXOs perform like OCXOs?



Existing State of the Art – Recent Innovations


- **1.** IC design & calibration techniques -f vs. T
- 2. XTAL design wander
- **3.** Package & structure (thermal design) airflow & stability for small T variations

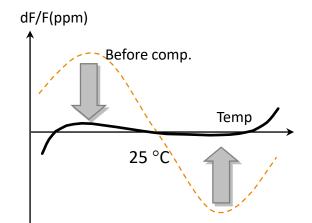
What do we need to do next?



2 Important Choices:

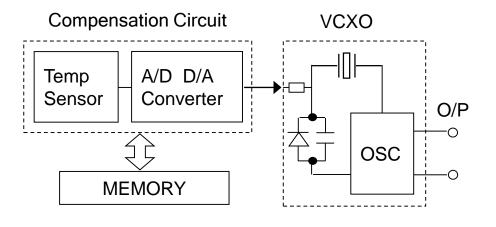
- 1. Analog vs. Digital
- 2. How do you compensate?

Analog Compensation



Analog Compensation Method

Advantage: No discrete phase jumps Challenge: fitting error


- Crystal cutting & design optimization
- Calibration techniques accuracy vs. cost

Digital Compensation

Temp

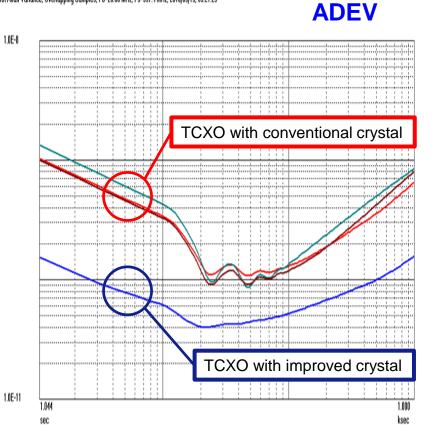
Digital Compensation Method

Advantage: less fitting error (lots of points!)

Challenge: discrete phase jumps

- Easy answer: resolution < stability
- How well can you measure temperature? How well do you know your crystal?

dF/F(ppm)

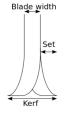

Before comp.

25°C

Short-Term Stability (Wander)

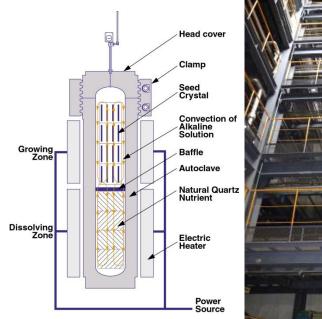
Microsemi TimeMonitor Analyzer (file=01187.dat) Root Allan Variance; Overlapping Samples; Fo=20.00 MHz; Fs=957.4 mHz; 2016/05/13; 09:21:25

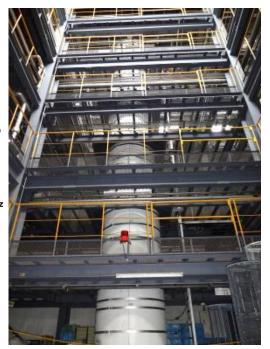
© 2018 Seiko Epson Corporation All Rights Reserved


Crystal Design Improvements

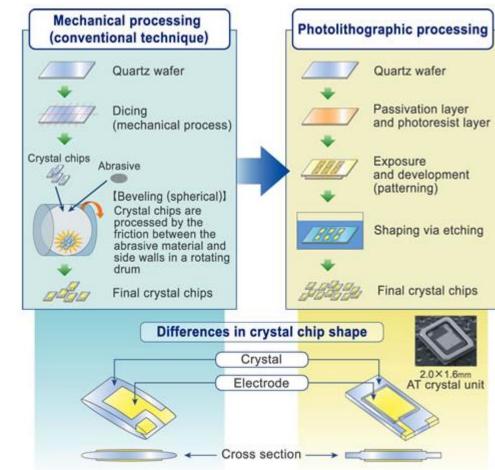
① Material Purity

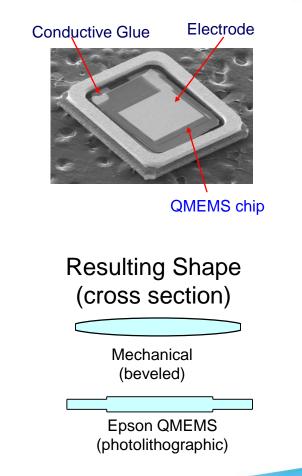
② Crystal Processing





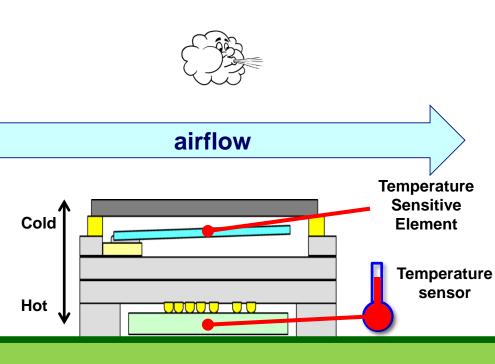
Material Purity (Autoclave)





Crystal Processing

© 2018 Seiko Epson Corporation All Rights Reserved



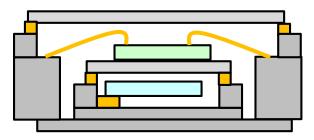
13

Why TCXOs are Sensitive to Airflow

Fundamental Mechanism


- Temperature-sensitive element (crystal) and temperature sensor (IC) are not in the same place
- Airflow causes Temperature gradient
- How sensitive is Quartz?
 - $\frac{df}{dT} = \frac{20 \ ppm}{60 \ ^{\circ}C} = 0.3 \ ppm/^{\circ}C$ vs. 30 $ppm/^{\circ}C$ for Silicon
 - How much temperature gradient can we tolerate?

 $1\,ppb \div 0.3\,ppm/^{\circ}C = 0.003\,^{\circ}C$


PCB

Construction – Double-Decker vs. DoubleSeal™

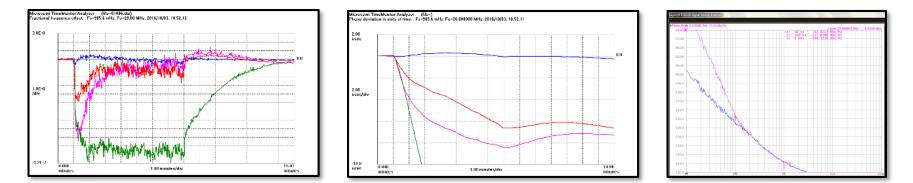
Double-Decker

Phase transients due to to airflow

Crystal and IC not thermally coupled

DoubleSeal™

Better Thermal Design


- Protected from airflow and board turbulence
- More stable for small T changes

US & Japanese patents

The Advantage of DoubleSeal[™] Technology

Performance under Airflow

Better Frequency Stability 3-25x Better Phase Stability 1-250x Better Phase Noise 30 dB @ 10 Hz

Dependable Synchronization

Comparison of Specs

	Conventional TCXOs	CoubleSeal™ TCXO	Future TCXO	Current OCXOs
Aging	±3 ppm	±3 ppm	<< 1 ppm	±1 ppm
Initial	±1 ppm	±1 ppm	±1 ppm	±500 ppb
vs. T	±0.1-0.28 ppm	±0.1-0.28 ppm	📫 ±10 ppb	±10 ppb
vs. V	±0.1 ppm	±0.1 ppm 🗕	→ ±10 ppb 🗸	±10 ppb
vs. C _L	±0.1 ppm	±0.1 ppm 🗧	➡ ±10 ppb 🗸	±10 ppb
TOTAL	< ±4.6 ppm	< ±4.6 ppm	< ±4.6 ppm	< ±4.6 ppm
24-hour drift	±40 ppb	±5 ppb 🗧	🔶 ±1 ppb	< ±1 ppb
ADEV (1s)	1E-9	2E-10	➡ 1E-10	0.5-1E-10

So how close are we? Next Steps?

Where are we now?

- TCXOs easily meet S3, but not S3E
- Many PTP systems need OCXOs
- TCXOs getting a **lot** better

Solved problems

- Greatly improved wander due to improved crystal design
- Airflow issues solved with thermal design techniques
- 24-hour drift getting a lot better, approaching OCXOs

What's next?

- Improve f vs. T through calibration techniques $-\pm 100$ ppb $\rightarrow \pm 10$ ppb
- Further improvement of wander and 24-hour drift

How soon can this be done?

THANK YOU

Allan Armstrong Chris McCormick Abbas Hage Yuichi Toriumi Yasuo Maruyama Tomonori Oya Takuya Owaki Naohisa Obata Katsuhito Nakajima Hideo Haneda Yasuhiro Sudo

Masayuki Ishikawa Atsushi Kiyohara Mihiro Nonoyama Satoru Kodaira Takashi Kumagai

TCXOs

OCXOs

SYNCHRONIZATION PRODUCTS

μAO

© 2018 Seiko-Epson Corporation. All Rights Reserved. This entire presentation is copyrighted property of Seiko-Epson Corporation. Any reproduction, publication, display, or reprint in whole or in part is strictly prohibited.

ERTICAL INTEGRATION

#1

COMPLETE

PRODUCT

PORTFOLIO

