
Timestamp	Temporal	Logic	(TTL)	and	
Testing	Methodology	for	Monitoring	
the	Timing	of	Cyber-Physical	Systems

Dr.	Patricia	Derler,	Research	Scientist	
National	Instruments

Joint	work	with:
Aviral Shrivastava,	Mohammadreza Mehrabian,	Mohammad	Khayatian (ASU),	
John	Eidson (UCB),	Patricia	Derler	(NI),	Marc	Weiss	(Marc	Weiss	Consulting),	

Edward	Griffor,	Ya-Shian Li	Baboud,	Dhananjay Anand (NIST),	Hugo	Andrade	(Xilinx),	Kevin	Stanton	(Intel)

} Sensors à sensor networks
} Embedded systems à networked embedded

systems
} Control has come to software

} Mechanical à Electrical à Computer

The	real	question	for	our	times	is:
If	I	can	sense	anything,	and	I	can	control	
everything,	what	(good)	can	I	do?

} Nexus of CPS, Machine Learning and Big Data
} Enable large scale and compelling applications
} Autonomous cars, Smart cities, City-level traffic

management, Smart grid

CPS:	Exciting	times

2

[1]	Shrivastava,	Aviral,	et	al.	"Time	in	cyber-physical	systems." Hardware/Software	Codesign and	System	Synthesis	(CODES+	ISSS),	2016	International	Conference	on.	IEEE,	2016.

Timing is	fundamental	to	CPS

• Tight	sense-compute-actuation	loop

• Hard-real-time	CPS
• Correctness	depends	on	functionality	as	well	as	correct	
timing [1].

• Failure	of	timing	can	lead	to	catastrophe!
• e.g.	Autonomous	cars

• Timing	is	important	even	in	the	non-real-time	case
• Timing	predictability	can	lead	to	performance	
improvements

• Timing	constraints	come	from
• System	stability	requirements
• System	performance	requirements
• Legal	requirements

Overview	of	this	Talk

• Importance	of	Timing	in	CPS
• CODES+ISSS	2016

• How	do	we	specify	the	timing	constraints	of	a	distributed	CPS?
• EMSOFT-TECS	2017

• How	can	we	monitor	if	a	CPS	is	meeting	its	timing	constraints?
• DAC	2018

• A	testbed	for	monitoring	timing	constraints
• Reconfig 2015

• CPS	Testbeds
• Flying	paster,	synchronized	cameras,	phase	synchronization	over	the	internet,	
intersection	for	autonomous	cars

• Timing	Health	Monitoring	and	Management	System

How	to	specify	timing	constraints	of	CPS?

Instead	of	specifying	timing	constraints	in	
natural	language	on	paper

Formal,	mathematical,	unambiguous	specification	
of	timing	constraints	in	Logic:	specify	patterns	that	
timed	behaviors	of	systems	should	(not)	satisfy
LTL,	MTL,	STL,	…

STL	(Signal	Temporal	Logic):	Predicates	over	
real	value,	real-time

Example: Between 2s and 6s the signal is
between -2 and 2

𝜓 ≔ 𝐺 $,& (𝑥 𝑡 < 2)

Why	a	new	logic?

• Difficult	to	express	sequential	timing	constraints	on	events	– they	
become	nested	constraints

Example: Whenever x1 rises above 0.5, x2 should rise above 0.6 within 1 second and after that,
x3 should fall below 0.4 within 5 seconds

ψ = □((x1> 0.5) ∧ (¬(x1 > 0.5)S⊤))∨ (¬(x1 > 0.5) ∧ ((x1 > 0.5)U⊤)))⇒
(♢[0,1]((x2 > 0.6) ∧ (¬(x2 > 0.6)S⊤))∨ (¬(x2 > 0.6) ∧ ((x2 > 0.6)U⊤))⇒
(♢[0,5]((¬(x3 > 0.4) ∧ ((x3 > 0.4)S⊤)))∨ (((x3 > 0.4) ∧ (¬(x3 > 0.4)U⊤))))))

• We	want	domain-specific	support	
for	CPS	time	constraints

6

ψ = □ ((↑(x1>0.5))⇒ (♢[0,1](↑(x2>0.6))
=> (♢[0,5] (↓(x3>0.4)))))
□ : Globally, ♢: Eventually, ↑: Rise
operator, ↓: fall operator
↑ψ = (ψ∧(¬ψS⊤))∨ (¬ψ∧(ψU⊤))
↓ψ = (¬ψ∧(ψS⊤))∨ (ψ∧(¬ψU⊤))

Timestamp	Temporal	Logic

• Latency
• ℒ	 𝑠0, 𝑡ℎ0,↘ , 𝑠$, 𝑡ℎ$,↗ , 𝜀 		 <,>,= 	c

• ℒ	 𝑠0, 𝑡ℎ0,↘ , 𝑠$, 𝑡ℎ$,↗ , 𝜀 = Δ𝑡
• Δ𝑡 < 𝑐 + 𝜀;	Δ𝑡 > 𝑐 − 𝜀;	
• 𝑐 − 𝜀 < Δ𝑡 < 𝑐 + 𝜀

• Simultaneity
• 𝒮 𝑠0, 𝑡ℎ0,↗ , 𝑠$, 𝑡ℎ$,↘ , 𝑠;, 𝑡ℎ;,↗ , 𝜀

• 𝑚𝑎𝑥 𝑡0, 𝑡$, 𝑡; − min 𝑡0, 𝑡$, 𝑡; < 𝜀
• t	is	the	timestamp	of	the	event

• Chronological
• 𝒞 𝑠0, 𝑡ℎ0,↗ , 𝑠$, 𝑡ℎ$,↘ , 𝑠;, 𝑡ℎ;,↗ , … , 𝜀

• 𝜀 is	the	minimum	latency	between	the	events.

• Frequency
• ℱ 	𝑠0, 𝑡ℎ0,↗ , 𝜀0, 𝜀$ 	 <,>,= 	𝑐	
• c	=	 0

DE±GE	
(𝑇0 is	the	period	of	threshold	crossing)

• 	ℱ 𝑠0, 𝑡ℎ0,↘ , 𝜀0 = Δf
• Δf < 𝑐 + 𝜀$;	Δ𝑓 > 𝑐 − 𝜀$;	
• 𝑐 − 𝜀$ < Δ𝑓 < 𝑐 + 𝜀$

• Phase
• 𝒫 𝑠0, 𝑡ℎ0,↗ , 𝑠$, 𝑡ℎ$,↘ , 𝜀0, 𝜀$ 			 <, >,= 	c
• 0

DE±GE	
(𝑇0 is	the	period	of	threshold	crossing	of	𝑠0)

• 0
DL±GE	

(𝑇$ is	the	period	of	threshold	crossing	of	𝑠$)

• 𝒫	 𝑠0, 𝑡ℎ0,↘ , 𝑠$, 𝑡ℎ$,↗ , 𝜀0, 𝜀$ = Δt
• Δt < 𝑐 + 𝜀$;	Δ𝑡 > 𝑐 − 𝜀$;	𝑐 − 𝜀$ < Δ𝑡 < 𝑐 + 𝜀$

• Burst
• ℬ 𝑠0, 𝑡ℎ0,↗ , 𝑁, 𝑑Q,𝑚, 𝜀 (𝑁 events	in	𝑑Q duration	

then	𝑚 time	unit	in	silence)
• 𝑡RS0 > 𝑡R + 𝑚 + 𝜀

Latency	Constraint

Latency constraint	captures	the	time	difference	between	the	
occurrence	of	two	events	 𝑠0, 𝑡ℎ0,↘ 	𝑎𝑛𝑑	〈𝑠$, 𝑡ℎ$,↗〉 .

8

𝑡ℎ0

𝑡ℎ$

𝑡𝑖𝑚𝑒

𝑣𝑜𝑙𝑡𝑎𝑔𝑒

Δ𝑡

𝑠0

𝑠$

ℒ 〈𝑠0, 𝑡ℎ0,↘〉, 〈𝑠$, 𝑡ℎ$,↗〉

𝑠: 𝑎𝑛𝑎𝑙𝑜𝑔	𝑠𝑖𝑔𝑛𝑎𝑙
𝑡ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

↗: 	crossing	from	below
↘: 	𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔	𝑓𝑟𝑜𝑚	𝑎𝑏𝑜𝑣𝑒

<
>
=

c ± 𝜖

Timestamp	Temporal	Logic

• Latency
• ℒ	 𝑠0, 𝑡ℎ0,↘ , 𝑠$, 𝑡ℎ$,↗ , 𝜀 		 <,>,= 	c

• ℒ	 𝑠0, 𝑡ℎ0,↘ , 𝑠$, 𝑡ℎ$,↗ , 𝜀 = Δ𝑡
• Δ𝑡 < 𝑐 + 𝜀;	Δ𝑡 > 𝑐 − 𝜀;	
• 𝑐 − 𝜀 < Δ𝑡 < 𝑐 + 𝜀

• Simultaneity
• 𝒮 𝑠0, 𝑡ℎ0,↗ , 𝑠$, 𝑡ℎ$,↘ , 𝑠;, 𝑡ℎ;,↗ , 𝜀

• 𝑚𝑎𝑥 𝑡0, 𝑡$, 𝑡; − min 𝑡0, 𝑡$, 𝑡; < 𝜀
• t	is	the	timestamp	of	the	event

• Chronological
• 𝒞 𝑠0, 𝑡ℎ0,↗ , 𝑠$, 𝑡ℎ$,↘ , 𝑠;, 𝑡ℎ;,↗ , … , 𝜀

• 𝜀 is	the	minimum	latency	between	the	events.

• Frequency
• ℱ 	𝑠0, 𝑡ℎ0,↗ , 𝜀0, 𝜀$ 	 <,>,= 	𝑐	
• c	=	 0

DE±GE	
(𝑇0 is	the	period	of	threshold	crossing)

• 	ℱ 𝑠0, 𝑡ℎ0,↘ , 𝜀0 = Δf
• Δf < 𝑐 + 𝜀$;	Δ𝑓 > 𝑐 − 𝜀$;	
• 𝑐 − 𝜀$ < Δ𝑓 < 𝑐 + 𝜀$

• Phase
• 𝒫 𝑠0, 𝑡ℎ0,↗ , 𝑠$, 𝑡ℎ$,↘ , 𝜀0, 𝜀$ 			 <, >,= 	c
• 0

DE±GE	
(𝑇0 is	the	period	of	threshold	crossing	of	𝑠0)

• 0
DL±GE	

(𝑇$ is	the	period	of	threshold	crossing	of	𝑠$)

• 𝒫	 𝑠0, 𝑡ℎ0,↘ , 𝑠$, 𝑡ℎ$,↗ , 𝜀0, 𝜀$ = Δt
• Δt < 𝑐 + 𝜀$;	Δ𝑡 > 𝑐 − 𝜀$;	𝑐 − 𝜀$ < Δ𝑡 < 𝑐 + 𝜀$

• Burst
• ℬ 𝑠0, 𝑡ℎ0,↗ , 𝑁, 𝑑Q,𝑚, 𝜀 (𝑁 events	in	𝑑Q duration	

then	𝑚 time	unit	in	silence)
• 𝑡RS0 > 𝑡R + 𝑚 + 𝜀

Overview	of	this	Talk

• Importance	of	Timing	in	CPS
• CODES+ISSS	2016

• How	do	we	specify	the	timing	constraints	of	a	distributed	CPS?
• EMSOFT-TECS	2017

• How	can	we	monitor	if	a	CPS	is	meeting	its	timing	constraints?
• DAC	2018

• A	testbed	for	monitoring	timing	constraints
• Reconfig 2015

• CPS	Testbeds
• Flying	paster,	synchronized	cameras,	phase	synchronization	over	the	internet,	
intersection	for	autonomous	cars

• Timing	Health	Monitoring	and	Management	System

Monitoring	Timing	Constraints

• Consider	a	global	timing	constraint
• □ ;,l 𝑠 > 2𝑉
• Between	3	to	8	time	unit	after	now,	signal	𝑠 should	be	

greater	than	2𝑉

• Traditional	methods
• Look	at	all	time-steps	in	the	interval	to	evaluate	for	every	

time-step.

time

⊤

⊥

□ ;,l 𝜓

𝜓

𝑡0 𝑡0 + 3 𝑡0 + 8

⊥
⊤

Monitoring	Timing	Constraints

• Globally
• □ ;,l 𝑠 > 2𝑉
• Between	3	to	8	time	unit	after	now,	signal	𝑠 should	be	always	

greater	than	2𝑉

• Traditional	methods
• Look	at	all	time-step	in	the	interval	to	evaluate	for	every	time-

step.

time

⊤

⊥

□ ;,l 𝜓

𝜓

𝑡$ 𝑡$ + 3 𝑡$ + 8

⊥
⊤

𝑡0

Timestamp-based	Monitoring	Approach	

time

⊤

⊥

□ ;,l 𝜓

𝜓

𝑡$ 𝑡$ + 3 𝑡$ + 8

⊥
⊤

𝑡0

time

⊤
⊥ 𝜓

⊥

⊤

𝑡r
s 𝑡t

s𝑡r
□ u,v s𝑡t

□ u,v s

□ ;,l 𝜓

v Traditional
v No. of Operations:

o 8 − 3 ×𝑓x	 ×𝑇×𝑓x
o 𝑇: test duration
o 𝑓x: sampling frequency

v Memory:
o It	needs	the	entire	interval	which	is	in	future

ü 8 − 3 ×𝑓x
ü Per constraint

v TMA – Our Approach
v No. of operations:

o 2 timestamps
o Per the most recent event timestamps

v Memory:
o It needs the most recent event timestamps

ü 2 timestamps
ü Per falling and rising edge

TMA	– Online	tool	for	monitoring	timing	constraints

• TMA	– Enables	online	Timing	Monitoring
• Download	and	try	
http://aviral.lab.asu.edu/cps-software-
download/

• Matlab based	tool

• Inputs:
A	trace	of	timestamped	signals,	timestamp-value	pairs	
for	signals
Timing	constraint	in	TTL	(and	STL)

• Outputs:
When	the	timing	constraints	are	met

• Coming	soon:	A	FPGA-based	tool	for	online	
monitoring	of	timing	constraints	of	a	real	CPS

} Whenever signal 𝑥0 rises above 0.5, signal
𝑥$ should rise above 0.6 within 1 second:

} 𝜓 = [𝐿 𝑥0, 0.5, ↗ , 𝑥$, 0.6, ↗ < 1]
ℒ

⋈

>

𝒙𝟏 𝟎. 𝟓

⋈

>

𝒙𝟐 𝟎. 𝟔

<

𝟏

ℒ

⋈

⋈

>

>

<

𝟎. 𝟓
𝒙𝟏

𝒙𝟐
𝟎. 𝟔

𝟏

Overview	of	this	Talk

• Importance	of	Timing	in	CPS
• CODES+ISSS	2016

• How	do	we	specify	the	timing	constraints	of	a	distributed	CPS?
• EMSOFT-TECS	2017

• How	can	we	monitor	if	a	CPS	is	meeting	its	timing	constraints?
• DAC	2018

• A	testbed	for	monitoring	timing	constraints
• Reconfig 2015,	DAC	2017

• CPS	Testbeds
• Flying	paster,	synchronized	cameras,	phase	synchronization	over	the	internet,	
intersection	for	autonomous	cars

• Timing	Health	Monitoring	and	Management	System

Timing Monitoring

• Single	systems	monitoring
• Monitor	on	oscilloscope	or	Data	Acquisition	(DAQ)
• ADC	resolution	(e.g.	14-bit)	and	range	(0-5V)
• Sampling	frequency	(e.g.	100kHz)
• Input	impedance	(e.g.	1	MΩ)

• Additionally	in	Distributed	Monitoring	[4]
• Having	the	same	notation	of	time	(requires	synchronization)
• Synchronization	accuracy	(e.g.	100us)
• Clock	error	(e.g.	5	ppm)

What	can	be	monitored?

• Monitoring	the	exact	occurrence	time	of	an	event	needs	special	
instruments.

• Parameters	and	especially	epsilon	of	the	timing	constraints	put	
limitations	on	the	resolution	and	sampling	rate	of	ADC	converters.

Quantization	error	<	ε

• Any	physical	connection	between	SUT	and	monitoring	testbed	
can	change	the	shape	of	signals.

Loading	effect	<	ε

• Clocks	are	not	perfect	and	even	after		synchronization,	there	is	an	
error.

Clock	drift	<	ε

Quantization	error	+	loading	error	+	clock	drift	<	ε

CPS	Timing	Testbed

• Distributed	CPS,	Distributed	testbed
• Synchronize	time	among	the	distributed	tested	components
• Testbed	captures	timestamped	signal	at	each	node

[4]	Shrivastava,	Aviral,	et	al.	"A	testbed	to	verify	the	timing	behavior	of	cyber-physical	systems."	Design	Automation	Conference	(DAC),	2017	54th	ACM/EDAC/IEEE.	IEEE,	2017.

• Runtime	or	offsite	
evaluation	of	
timing	constraints

• Can	provide	timing	
constraints	
remotely,	testbed	
will	adjust	the	
sampling	rate,	ADC	
resolution,	
synchronization	
etc.

Overview	of	this	Talk

• Importance	of	Timing	in	CPS
• CODES+ISSS	2016

• How	do	we	specify	the	timing	constraints	of	a	distributed	CPS?
• EMSOFT-TECS	2017

• How	can	we	monitor	if	a	CPS	is	meeting	its	timing	constraints?
• DAC	2018

• A	testbed	for	monitoring	timing	constraints
• Reconfig 2015,	DAC	2017

• CPS	Testbeds
• Flying	paster,	synchronized	cameras,	phase	synchronization	over	the	internet,	
intersection	for	autonomous	cars

• Timing	Health	Monitoring	and	Management	System

Flying	Paster
A	Flying	Paster is	a	splicer	for	a	web	press	that	is	used	for	continuous	production.	It	works	by	"pasting"	a	spare	roll	onto	
the	active	roll	so	that	the	press	does	not	have	to	stop.	

• Active	roller	rotates	in	a	constant	speed.
• Spare	roller	start	to	rotate	as	the	Active	roller	speed	after	AOP	signal.
• Match	signal	rises	when	two	speeds	are	the	same.
• 225° after	Match,	strobe	flashes	for	contact	command,	290° after	Match,	strobe	flashes	for	cut	command.
• We	monitored	it	by	expressing	its	timing	constraints	in	TTL	and	implementing	the	automated	time-testing	methodology

Active	RollerSpare	Roller

Active	Roller

Spare	Roller

Spare	Roller Active	Roller

Synchronized	Cameras
3D	image	reconstruction	based	on	multiple	2D	images	taken	
from	different	angles	of	a	scene.

• The	capturing	for	two	cameras	should	be	at	the	same	time	with	0.01	𝑠 as	
the	tolerance.

• The	latency	between	issuing	the	command	and	actual	capturing	should	
be	less	than	0.2	𝑠.

𝑆 𝑠$, 2.5, ↗ , 𝑠;, 2.5, ↗ , 0.01 ⋀𝐿 𝑠0, 2.5, ↗ , 𝑠$, 2.5, ↗ < 0.2)

• cRIO 𝑓����Q = 5𝑝𝑝𝑚	
• 𝑡x��� = 100𝑛𝑠 and 𝑟x��� = 1𝑠

• Sampling rate 𝑓x = 20𝐾𝐻𝑧

• The maximum error 𝜖��� =
0
t�

• Therefore, the total error:

• 𝜖 � ¡� =
0

$¢£¤¥
+ ¦§x

0x
+ 100𝑛𝑠 ≈ 55𝜇𝑠

• 55𝜇𝑠 << 0.2
• The monitoring device is qualified to monitor this application

Synchronize	motor	phases	over	the	internet

• The	generated	power	in	the	distributed	power	
generation	systems	resources	should	be	matched	in	
order	to	avoid	short	circuit.

• In	power	grid	system,	a	pair	of	generators	connected	to	the	
same	grid	should	generate	a	sinusoidal	signal	with	frequency	of	
60	Hz.

• The	phase	between	two	generator	shouldn’t	be	greater	than	10	
degree.

• We	implemented	an	emulation	of	Power	Grid	system	by	
two	motors	that	were	controlled	by	separated	controller.

• One	of	the	motors	is	connected	to	cRIO-9067	and	the	
other	is	connected	to	cRio_9035

• The	controllers	are	connected	through	a	real	network	
traffic	of	Internet.

• They	could	be	synchronized	within	1.5	ms.

Autonomous	vehicle	Intersection	
management
• A	testbed	with	Safety-Critical	timing	constraints

• Nondeterminism
• Sensor	error
• Network	delay
• Computation	delay

• Crossroads	[5]	– A	time-sensitive	autonomous	intersection	management	technique

Nondeterministic Round Trip Delay (RTD) when a car
sends a request to the Intersection Manager (IM)

1/10 scale mode intersection of RC cars.

[5]	Andert,	Edward,	Mohammad	Khayatian,	and	Aviral	Shrivastava.	"Crossroads:	Time-Sensitive	Autonomous	
Intersection	Management	Technique."	54th	Annual	Design	Automation	Conference.	ACM,	2017.

Overview	of	this	Talk

• Importance	of	Timing	in	CPS
• CODES+ISSS	2016

• How	do	we	specify	the	timing	constraints	of	a	distributed	CPS?
• EMSOFT-TECS	2017

• How	can	we	monitor	if	a	CPS	is	meeting	its	timing	constraints?
• DAC	2018

• A	testbed	for	monitoring	timing	constraints
• Reconfig 2015,	DAC	2017

• CPS	Testbeds
• Flying	paster,	synchronized	cameras,	phase	synchronization	over	the	internet,	
intersection	for	autonomous	cars

• Timing	Health	Monitoring	and	Management	System

Timing	Health	Monitoring	and	Reasoning	System

• Reasoning	in	TTL
• To	deduce		the	complex	timing	constraints	from	the	simpler	ones	and	reason	
about	the	complicated	timing	constraints	feasibility.

• Automatic	timing	health	monitoring
• Utilizing	TTL	reasoning	for	performance	degrading	when	the	timing	
constraints	are	not	met	instead	of	terminating	CPS	operation.

• Timing	Correct-by-construction
• Utilizing	TTL	to	defining	the	CPS	temporal	behavior	in	the	design	phase.

Summary

• Importance	of	Timing	in	CPS
• CODES+ISSS	2016

• How	do	we	specify	the	timing	constraints	of	a	distributed	CPS?
• EMSOFT-TECS	2017

• How	can	we	monitor	if	a	CPS	is	meeting	its	timing	constraints?
• DAC	2018

• A	testbed	for	monitoring	timing	constraints
• Reconfig 2015,	DAC	2017

• CPS	Testbeds
• Flying	paster,	synchronized	cameras,	phase	synchronization	over	the	internet,	
intersection	for	autonomous	cars

• Timing	Health	Monitoring	and	Management	System

Thank	You

• Questions?

Backup	Material

How	to	specify	timing	constraints	of	CPS?

Instead	of	specifying	timing	constraints	in	
natural	language	on	paper

• LTL	(Linear	Temporal	Logic)
• Deals	with	discrete	sequence	of	states
• Based	on	logic	operators	(¬,	∧,	∨),	and	
temporal	operators,	next	(N),	always	(G),	
eventually	(F),	and	until	(U).

• Boolean	predicates,	discrete	time
• Example	constraint:	G	(r	=>	F	g)
• Sense	of	time	is	“states”
• Not	sufficient	for	CPS	– CPS	operate	in	
continuous	time.

• MTL	(Metric	Temporal	Logic)
• Boolean	predicates,	real-time
• Example	constraint:	G	(r	=>	F[0,5] g)
• Not	sufficient	for	CPS	– CPS	may	have	real-
valued	logic

Formal,	mathematical,	unambiguous	specification	
of	timing	constraints	in	Logic:	specify	patterns	that	
timed	behaviors	of	systems	should	(not)	satisfy

STL	– Signal	Temporal	Logic

Predicates	over	real	value,	real-time
Assume	signals	x1[t],	x2[t],	...,	xn[t],	then	atomic	predicates	are	of	the	
form:	
μ = f(x1[t],...,xn[t]) > 0

Example: Between 2s
and 6s the signal is
between -2 and 2

𝜓 ≔ 𝐺 $,& (𝑥 𝑡 < 2)

Express	timing	constraints	in	STL

• Intuitive	to	specify	value-based	(level-based)	timing	constraints
Example:	the	value	of	x[t]	is	less	than	2
φ :=	G[2,6] (|x[t]|	<	2)

• Hard	to	express	event-based	(edge-based)	timing	constraints
Example: Whenever x1 rises above 0.5, x2 should rise above 0.6 within 1 sec.
□ (↑(x1>0.5) ⇒ (♢[0,1](↑(x2>0.6))))
□ : Globally, ♢: Eventually, ↑: Rise operator
Definition of the rise operator

↑ψ = (ψ∧(¬ψS⊤))∨ (¬ψ∧(ψU⊤))

0.5𝑣

⊤
⊥ event

𝑥0

time

voltage

Express	timing	constraints	in	STL

• Harder	to	express	sequential	timing	constraints	on	events	– they	
become	nested	constraints

Example: Whenever x1 rises above 0.5, x2 should rise above 0.6 within 1 second and after
that, x3 should fall below 0.4 within 5 seconds

ψ = □ ((↑(x1>0.5))⇒ (♢[0,1](↑(x2>0.6)) => (♢[0,5] (↓(x3>0.4)))))
□ : Globally, ♢: Eventually, ↑: Rise operator, ↓: fall operator
↑ψ = (ψ∧(¬ψS⊤))∨ (¬ψ∧(ψU⊤))
↓ψ = (¬ψ∧(ψS⊤))∨ (ψ∧(¬ψU⊤))

ψ = □((x1> 0.5) ∧ (¬(x1 > 0.5)S⊤))∨ (¬(x1 > 0.5) ∧ ((x1 > 0.5)U⊤)))⇒
(♢[0,1]((x2 > 0.6) ∧ (¬(x2 > 0.6)S⊤))∨ (¬(x2 > 0.6) ∧ ((x2 > 0.6)U⊤))⇒
(♢[0,5]((¬(x3 > 0.4) ∧ ((x3 > 0.4)S⊤)))∨ (((x3 > 0.4) ∧ (¬(x3 > 0.4)U⊤))))))

32

Minimum	Latency	Constraint

A	Minimum	Latency constraint	expresses	that	the	latency	between	the	
occurrence	of	two	events	 𝑠0, 𝑡ℎ0,↘ 	𝑎𝑛𝑑	〈𝑠$, 𝑡ℎ$,↗〉 is	less	than	
some	value	(c).

ℒ 〈𝑠0, 𝑡ℎ0,↘〉, 〈𝑠$, 𝑡ℎ$,↗〉 < c+𝜖

𝑠: 𝑎𝑛𝑎𝑙𝑜𝑔	𝑠𝑖𝑔𝑛𝑎𝑙
𝑡ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

↗: 	crossing	from	below
↘: 	𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔	𝑓𝑟𝑜𝑚	𝑎𝑏𝑜𝑣𝑒

𝑡ℎ0

𝑡ℎ$

𝑡𝑖𝑚𝑒

𝑣𝑜𝑙𝑡𝑎𝑔𝑒

Δ𝑡

𝑠0

𝑠$

Δ𝑡 < 𝑐

Maximum	Latency	Constraint

A	Maximum	Latency constraint	expresses	that	the	latency	between	the	
occurrence	of	two	events	 𝑠0, 𝑡ℎ0,↘ 	𝑎𝑛𝑑	〈𝑠$, 𝑡ℎ$,↗〉 is	greater	than	
some	value	(c).

ℒ 〈𝑠0, 𝑡ℎ0,↘〉, 〈𝑠$, 𝑡ℎ$,↗〉 < c-𝜖

𝑠: 𝑎𝑛𝑎𝑙𝑜𝑔	𝑠𝑖𝑔𝑛𝑎𝑙
𝑡ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

↗: 	crossing	from	below
↘: 	𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔	𝑓𝑟𝑜𝑚	𝑎𝑏𝑜𝑣𝑒

𝑡ℎ0

𝑡ℎ$

𝑡𝑖𝑚𝑒

𝑣𝑜𝑙𝑡𝑎𝑔𝑒

Δ𝑡

𝑠0

𝑠$

Δ𝑡 < 𝑐

Exact	Latency	Constraint

An	Exact	Latency constraint	expresses	that	the	latency	between	the	
occurrence	of	two	events	 𝑠0, 𝑡ℎ0,↘ 	𝑎𝑛𝑑	〈𝑠$, 𝑡ℎ$,↗〉 is	equal	to	
some	value	(c)	with	
some	tolerance	(ε).

ℒ 〈𝑠0, 𝑡ℎ0,↘〉, 〈𝑠$, 𝑡ℎ$,↗〉 < c ± 𝜖

𝑠: 𝑎𝑛𝑎𝑙𝑜𝑔	𝑠𝑖𝑔𝑛𝑎𝑙
𝑡ℎ: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

↗: 	crossing	from	below
↘: 	𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔	𝑓𝑟𝑜𝑚	𝑎𝑏𝑜𝑣𝑒

𝑡ℎ0

𝑡ℎ$

𝑡𝑖𝑚𝑒

𝑣𝑜𝑙𝑡𝑎𝑔𝑒

Δ𝑡

𝑠0

𝑠$

Δ𝑡 < 𝑐

