

Timing in Packet Networks

WSTS 2018 San Jose, 18-21 June 2018

Stefano Ruffini, Ericsson

- -Background
- -Frequency Sync over the Physical Layer
- -Frequency sync via packets
- —Two-Way Time Transfer
- —Time Protocols: NTP/PTP Details
- —Impairments when delivering timing via packets
- —Packet-based Metrics for frequency and time

- Note: some of this material is based on earlier presentations from Christian Farrow and Kishan Shenoi

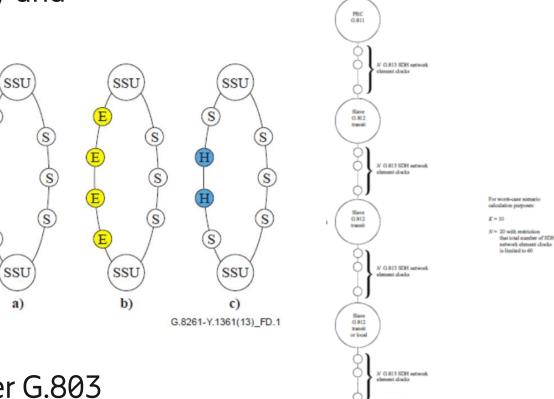
_	
=	=√i

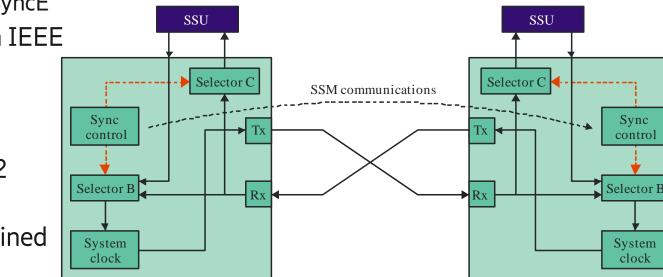
Background

- Packet switching network does not require sync itself (at least traditional packet networks)
- -CBR (Constant Bit Rate) services over ATM, early packet-sync related example
- —Generalization due to **migration to packet networks** (Ethernet-IP; Ethernet Physical layer traditionally defined as «asynchronous»):
- -Current main focus is to deliver **time/phase sync** reference
 - Packet-based sync technologies required (may be combined with synchronous physical layer)
- —«Deterministic» packet networks (e.g. **TSN**-IEEE, **Detnet**-IETF) as a related topic

SyncE: Introduction

- Several applications requiring accurate frequency are reached by Ethernet
 - It was agreed to define a synchronous Ethernet physical layer; Not in contradiction with IEEE
 - Only in full duplex mode (continuous signal required)
- **Based on SDH** specification (for interoperability and simplifying the standardization task)
 - Synchronous Ethernet equipment equipped with a synchronous Ethernet Equipment Clock – EEC (G.8262). Synchronous Ethernet interfaces extract the received clock and pass it to the system clock.
 - Synchronization Status Message as per G.8264
 - Ongoing work to define an **enhanced SyncE** (G.8262.1)
 - Extension to OTN («OEC»):
 - G.8262: *Timing characteristics of synchronous Ethernet equipment slave clock*
- It does not transport Time
- All nodes must support SyncE: sync chain as per G.803
 - Cannot be transported transparently across network boundaries




Figure 8-5/G.803 - Synchronization network reference chain

SSM (Synchronization Status Message) in SyncE

- SSM required to prevent timing loops and to support reference selection (as per SDH)
 - Details according to G.781 and G.8264
- In SDH SSM delivered in fixed locations of the SDH frame
 - Packet based mechanism required in case of SyncE
- OUI (organizationally unique identifier) from IEEE reused to specify exchange of QLs over the OAM specific slow protocol (OSSP)
- EEC option 1 clock treated as G.813
 option 1 (QL-SEC), EEC option 2 as an G.812
 type IV clock (QL-ST3).
- Two types of protocol message types are defined
 - "heart-beat" message (once per second)
 - Event message generated immediately

WSTS 2018 | Public | © Ericsson AB 2018 | 2018-05-30 | Page 5 (54)

- SSM QL value is considered failed if no SSM messages are received after a five second period.

G.8264-Y.1364(14)_F11-1

Ethernet synchronization messaging channel (ESMC) Format

- ESMC PDU with QL TLV always sent as the first TLV in the Data and padding field

Octet number	Size/bits	Field				
1-6	6 octets	Destination Address = $01-80-C2-00-00-02$ (hex)				
7-12	6 octets	Source Address				
13-14	2 octets	Slow Protocol Ethertype = 88-09 (hex)				
15	1 octet	Slow Protocol Subtype = $0A$ (hex)				
16-18	3 octets	ITU-OUI = 00-19-A7 (hex)	1			
19-20	2 octets	ITU Subtype	Oc	tet number	Size/bits	Field
21	bits 7:4 (Note 1)	Version		1	8 bits	Type: 0x01
	bit 3	Event flag		2-3	16 bits	Length: 00-04
	bits 2:0 (Note 2)	Reserved				
22-24	3 octets	Reserved		4	bits 7:4 (Note)	0x0 (unused)
25-1532	36-1490 octets	Data and padding (See point j)		\subset	bits 3:0	SSM code
Last 4	4 octets	FCS	NOTE – Bit	7 of octet 4 is the mos	st significant bit. The least significa	nt nibble bit 3 to bit 0 (bits 3.0)
number for the ESI	MC.	it of octet 21. Bit 7 to bit 4 (bits 7:4) represent the four		four-bit SSM code.	a significant on. The least significa	
NOTE $2 - $ The three	ee LSBs (bits 2:0) are	reserved.	J			

- Recently extended to carry new clock types (and inform on PRTC traceability)

Extended QL TLV

— Use of Padding bits also recently revised (set to all zero and ignored by receivers)

Octet number	Size/bits	Field		_		
1	8 bits	Type: 0x02		⊢x†	ended	
2-3	16 bits	Length: 0x0014				
4	8 bits	Enhanced SSM code (see Tak 6)	ole 11-	QL	TLV	
5-12	64 bits	SyncE clockIdentity of the originator of the extend TLV, Note1,		· · · · · · · · · · · · · · · · · · ·	SyncE clock	Identity EEE 1588 rules
13	8 bits	Flag; Note2				
14	8 bits	Number of cascaded eEECs the nearest SSU/PRC/				
15	8 bits	Number of cascaded EECs the nearest SSU/PRC/				
16-20	40 bits	Reserved for future use	9	Clock	Quality level	Enhanced SSM code
				EEC1	QL-EEC1	0xFF
				EEC2 r clock types ontained	QL-EEC2 QL message (refer to the QL TLV)	0xFF 0xFF
Note: ePRC SSM code (0x23) recently added (G.8264 Amd1, February 2018)		in [I	TU-T G.781] Note 1	Note 1		
(G.0204 A	mui, rebiual	y 2010j		PRTC	QL-PRTC	0x20
				ePRTC	QL-ePRTC	0x21
				eEEC	QL-eEEC	0x22
			Note 1.	ePRC	QL-ePRC	0x23
WSTS 2018 Public 0	© Ericsson AB 2018 2018-05-30	Page 7 (54)	Note 1: T G.781]		11-9 illustrate the full set o	T CIOCK Types from [110-

SSM codes for SyncE

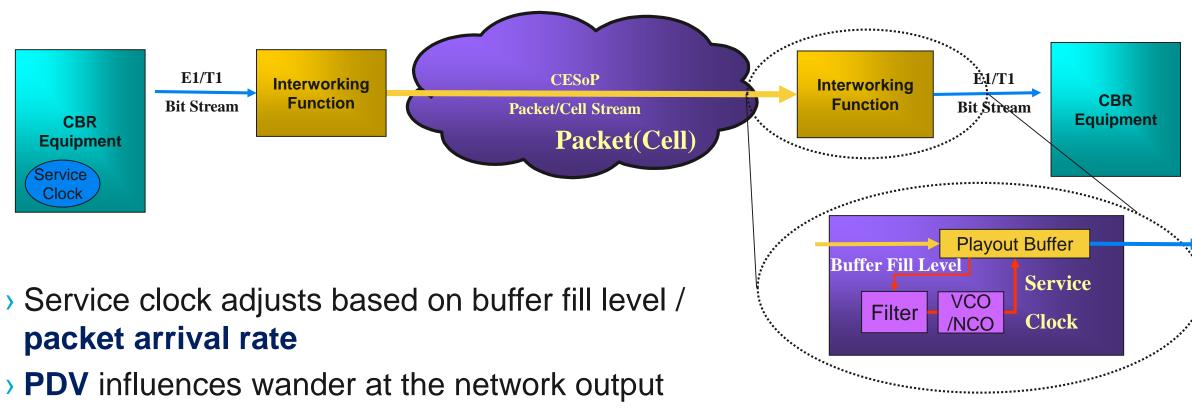
Table 11-7 (G.8264-2017): Option I

Clock	Quality level	SSM code	Enhanced SSM
			code
PRC	QL-PRC	0010	0xFF
SSU-A	QL-SSU-A	0100	0xFF
SSU-B	QL-SSU-B	1000	0xFF
EEC1	QL-EEC1	1011	0xFF
Note 1	QL-DNU	1111	0xFF
PRTC	QL-PRTC	0010	0x20
ePRTC	QL-ePRTC	0010	0x21
eEEC	QL-eEEC	1011	0x22
ePRC	QL-ePRC	0010	0x23

Note 1: There is no clock corresponding to this quality level.

Note 2: When processing the SSM QL, The SSM code should be processed first, followed by processing the Enhanced SSM code.

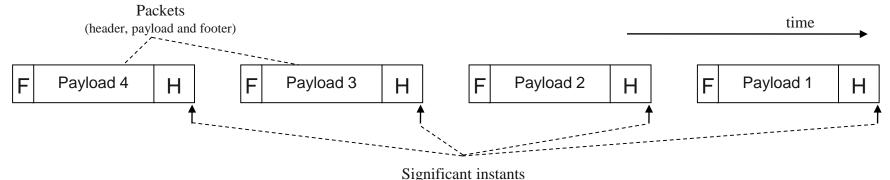
If a clock supports both the QL TLV and the extended QL TLV, it should set the SSM code and the enhanced SSM code according to table 11-7/11-8, and send both the QL TLV and the extended QL TLV.

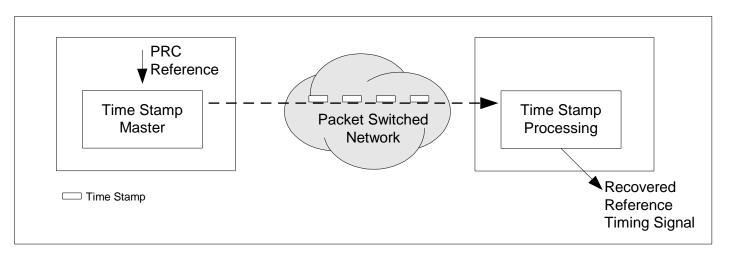

Table 11-8 (G.8264-2017): Option II

Clock	Quality level	SSM code	Enhanced SSM	
			code	
PRS	QL-PRS	0001	0xFF	
Note 1	QL-STU	0000	0xFF	
ST2	QL-ST2	0111	0xFF	
TNC	QL-TNC	0100	0xFF	
ST3E	QL-ST3E	1101	0xFF	
ST3	QL-ST3	1010	0xFF	
EEC2	QL-EEC2	1010	0xFF	
Note 1	QL-PROV	1110	0xFF	
Note 1	QL-DUS	1111	0xFF	
PRTC	QL-PRTC	0001	0x20	
ePRTC	QL-ePRTC	0001	0x21	
eEEC	QL-eEEC	1010	0x22	
ePRC	QL-ePRC	0001	0x23	
	• • • • • • •			

Note 1: There is no clock that corresponds to this quality level. Note 2: When processing the SSM QL, The SSM code should be processed first, followed by processing the Enhanced SSM code.

Note: ePRC SSM code (0x23) recently added (G.8264 Amd1, February 2018)

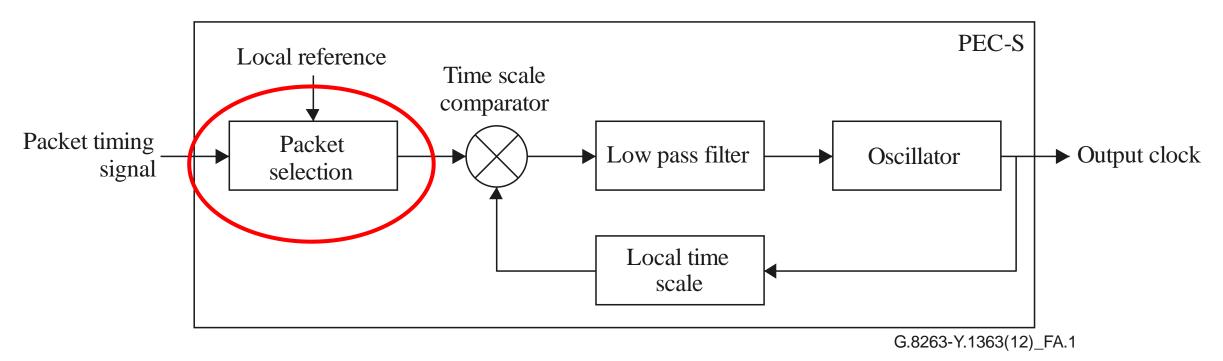

Packet-Based Timing: Adaptive Clock Operation


> PDV influences wander at the network output

From clocks to "packet Clocks"

- -CES Packets do have a regular rhythm
- -Extension to using dedicated protocols: NTP, PTP
 - Packets may not arrive regularly, but **timestamps** mean time information can be extracted
 - Timing information contained in the arrival/departure time of the packets
 - Two-way or one-way protocols
 - Timing recovery process requires **PDV filtering**
- -Time and frequency can be distributed from point A to point B

Packet-Based Methods

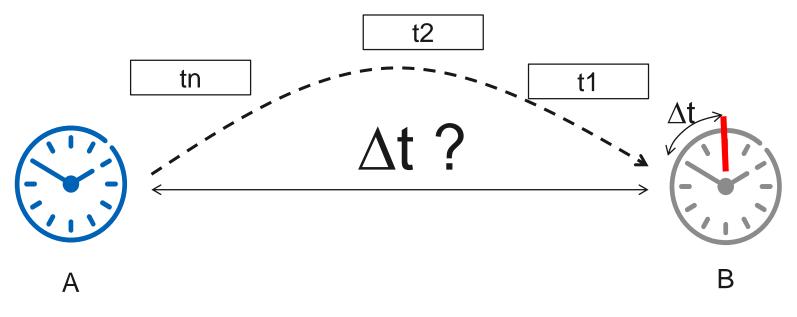


From ITU-T Recc. G.8261

> Timing information carried by **dedicated timing packets**:

- -Network Time Protocol (NTP) IETF RFC 5905
- -Precision Time Protocol (PTP) IEEE1588-2008

Packet-based Equipment Clock

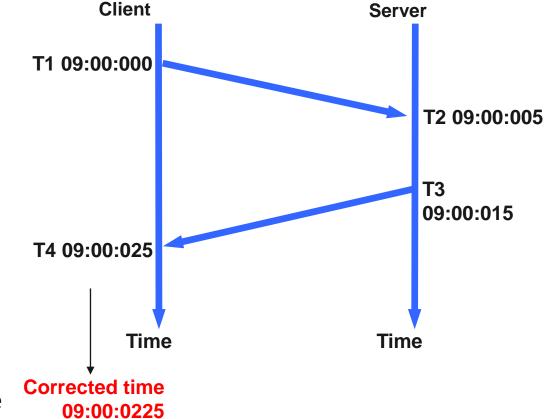


-Concept of «**Packet Selection**»:

- Pre-processing of packets before use in a traditional clock to handle PDV

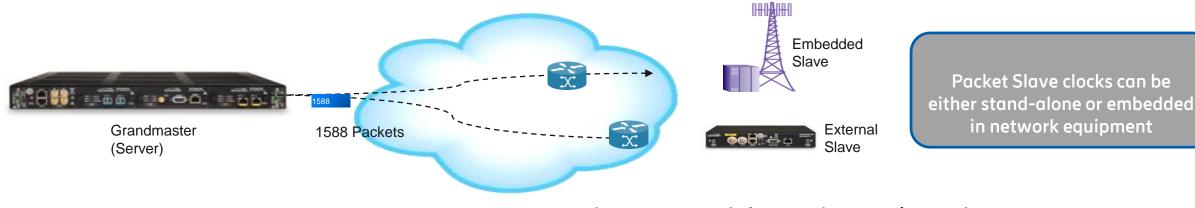
Two-ways time transfer

Delivery of Time synchronization requires also the knowledge of «transit delay» from A to B

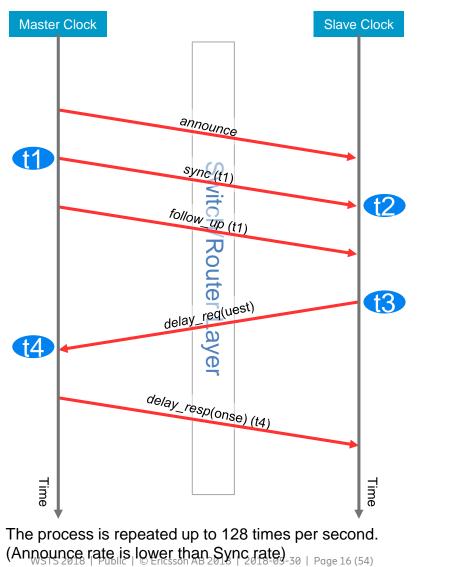


> **Two-ways transfer protocols** (round trip delay)

- Assumption for symmetric channel


How NTP Works

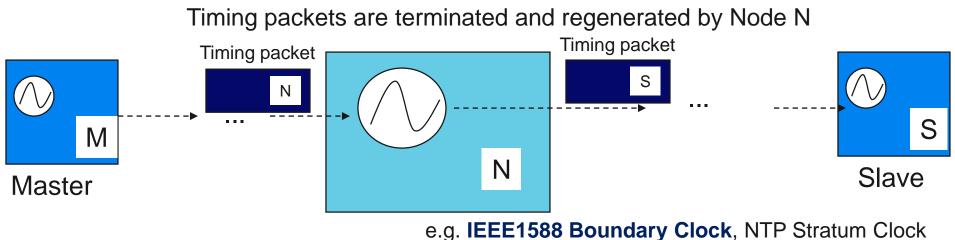
- T1 Originate Timestamp
 - Time request sent by client
- T2 Receive Timestamp
 - Time request received by server
- T3 Transmit Timestamp
 - Time reply sent by server
- T4 Destination Timestamp
 - Time reply received by client
- Round Trip Delay=(T4-T1)-(T3-T2)
 - Round Trip Delay =25-10=15
- Clock Offset= [(T2-T1)-(T4-T3)]/2
 - Clock Offset =[5-10]/2= -2.5 (Clients actual time when reply received was therefore 09:00:0225)
- Key Assumptions:
 - One way delay is half Round Trip (symmetry!)
 - Drift of client and server clocks are small and close to same value
 - Time is traceable


IEEE 1588-2008 (PTPv2)

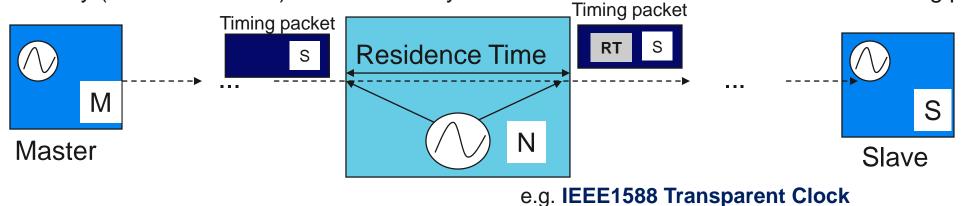
- The **Grandmaster** "reference clock" sends a series of time-stamped messages to slaves.
- Slaves process the round-trip delay & synchronize to the Grandmaster.
- Frequency can be recovered from an accurate time of day reference (but L1 can also be used ...)
- Best Master Clock Algorithm to define the hierarchy
- Accuracy is possible by means of:
- Proper packet rate (up to 128 per second)
- Hardware time-stamping (eliminate software processing delays)
- Timing support in the network (e.g. transparent clocks, boundary clocks)

Note: IEEE 1588 under revision (planned 2018/2019)

PTP Time Transfer Technique



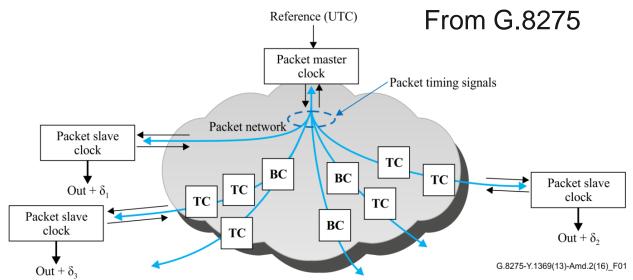
Data At
Slave Clock
Loop accord offect
Leap second offset
t2 (& t1 for 1-step)
t1,t2
t1, t2, t3
(,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,
t1, t2, t3, t4
· · ·


Round Trip Delay RTD = (t2 - t1) + (t4 - t3)

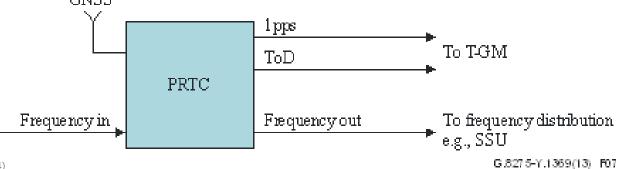
Offset: (slave clock error and one-way path delay) Offset_{SYNC} = t2 - t1 $Offset_{DELAY_REQ} = t4 - t3$ We assume path symmetry, therefore One-Way Path Delay = RTD \div 2 Slave Clock Error = $(t2 - t1) - (RTD \div 2)$ Notes: 1. One-way delay cannot be calculated exactly, but there is a bounded error. 2. The protocol transfers TAI (Atomic Time). UTC time is TAI + leap second offset from the announce message.

Timing Support

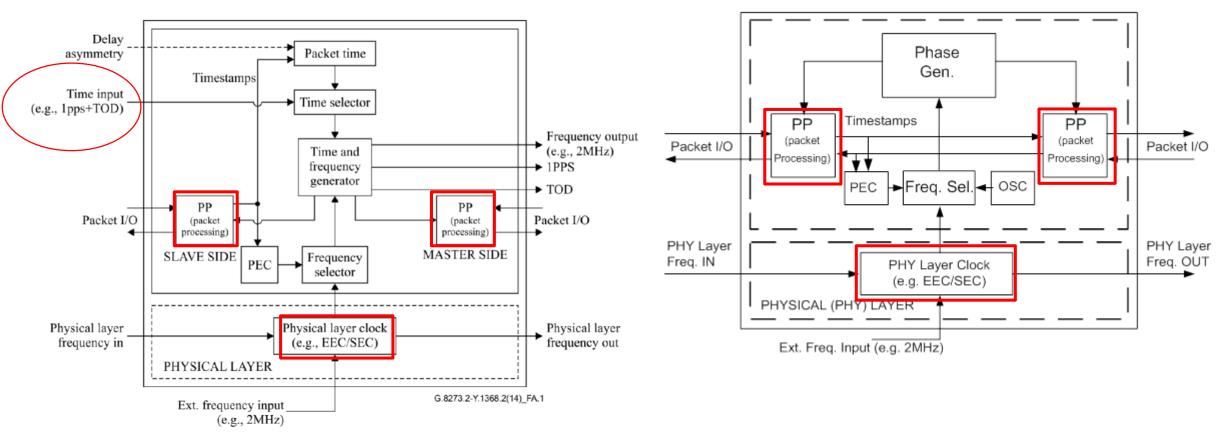
Latency (Residence Time) is calculated by NE and the information is added in the timing packet


To remove (reduce) «Time Error» components internal to the nodes

"The Telecom Profile" (G.8265.n/G.8275.n)

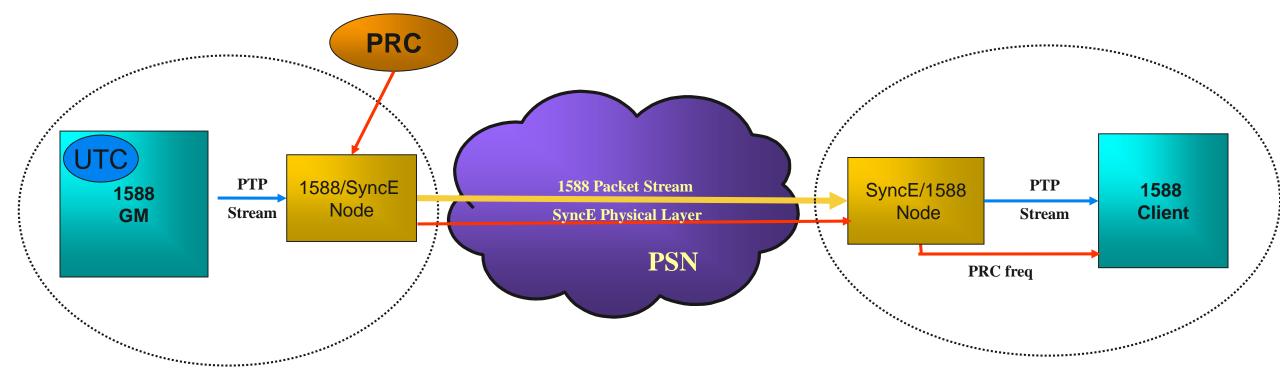

- —A profile is a subset of required options, prohibited options, and the ranges and defaults of configurable attributes
 - e.g. for Telecom: Update rate, unicast/multicast, etc.
- --PTP profiles are created to allow organizations to specify selections of attribute values and optional features of PTP that, when using the same transport protocol, **inter-works** and achieve a **performance** that meets the requirements of a particular application
- -Other (non-Telecom) profiles:
 - IEEE C37.238 (Standard Profile for Use of IEEE 1588 Precision Time Protocol in Power System Applications,)
 - IEEE 802.1AS (Timing and Synchronization for Time-Sensitive Applications in Bridged Local Area Networks); Under revision (targeting a full compliance with the next IEEE 1588 revision)

Time Synchronization Architecture


- General network topology for time/phase distribution from a packet master clock PRTC to a telecom time slave clock (T-TSC)
- > The synchronization flow is from the master to slave, although the timing messages will flow in both directions.
- Individual nodes are T-BCs or T-TCs in the case of full support from the network

Primary Reference Time Clock (PRTC) is the master of the time synchronization network (G.8272).
 ePRTC (enhancedPRTC) recently defined (G.8272.1). Cluster of PRTCs being discussed («cnPRTC» Coherent Network PRTC)

T-BC and T-TC clock models



-G.8273.2 and G.8273.3 provide models for the Telecom Boundary and Transparent Clocks

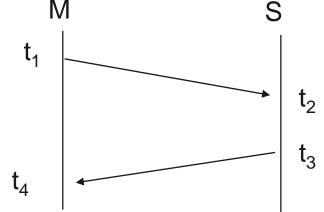
- Frequency sync via physical layer initially considered

Combined PTP-SyncE

> SyncE as "frequency assistance" to 1588

- > Gives immediate "frequency lock" to 1588 client
- > SyncE & 1588 functionality may be in the same node/element
- > SyncE might be used for "Time sync holdover"

WSTS 2018 | Public | © Ericsson AB 2018 | 2018-05-30 | Page 21 (54)


Impairments in Packet networks

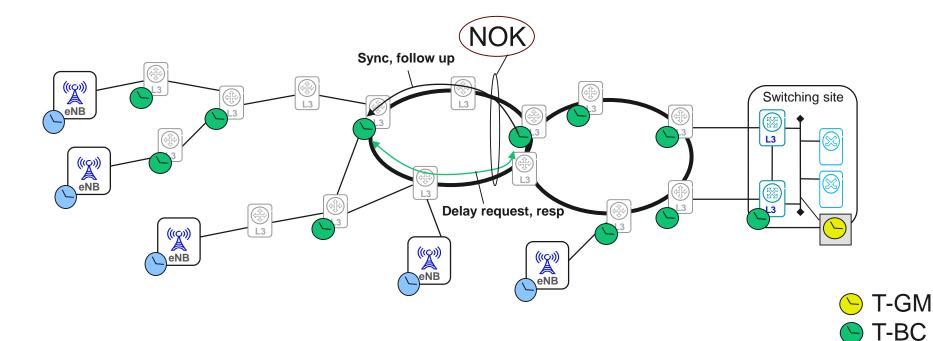
- —Physical path asymmetry
- —Path rerouting
- —Packet delay variations [PDV], depending on
 - Network dimension
 - Traffic load
 - QoS
- -Interactions between the packet streams

Time Synchronization via PTP: Asymmetry related impairments

—Basic principle: distribute Time sync reference by means of two-way time stamps exchange

Time Offset= $t_2 - t_1$ – Mean path delay Mean path delay = (($t_2 - t_1$) + ($t_4 - t_3$)/2

- —As for NTP, also in case of PTP, symmetric paths are required:
 - Basic assumption: $t_2 t_1 = t_4 t_3$
 - Any asymmetry will contribute with half of that to the error in the time offset calculation (e.g. 3 μ s asymmetry would exceed the target requirement of 1.5 μ s)


Asymmetry In Transport Networks

-Different paths in Packet networks

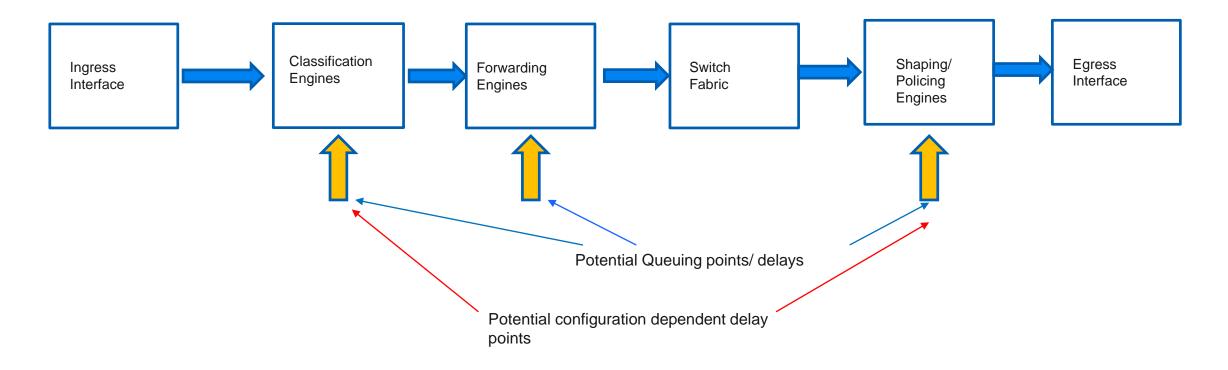
- Traffic Engineering rules in order to define always the same path for the forward and reverse directions
- —Different Fiber Lengths in the forward and reverse direction
 - Additional problem: DCF (Dispersion Compensated Fiber)
- —Different Wavelengths used on the forward and reverse direction
- —Asymmetries added by specific access and transport technologies
 - GPON
 - VDSL2
 - Microwave
 - OTN

Path Asymmetry and Rerouting

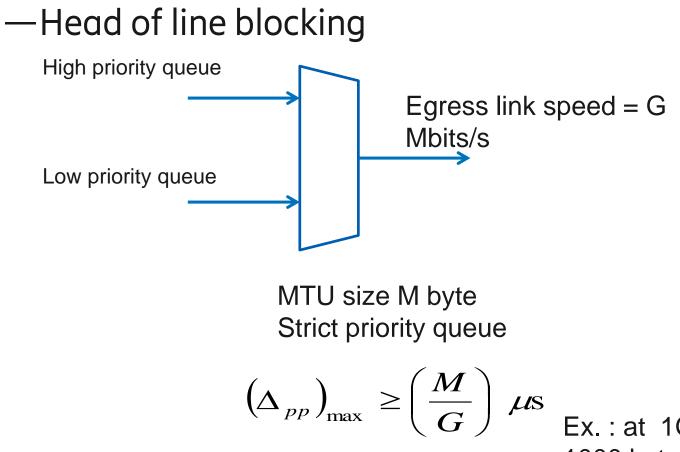
- -Asymmetry
 - Static difference in paths between the forward and reverse paths
 - Forward and reverse paths pass through different nodes

-Rerouting

- Leads change in path delays and can "confuse" the algorithms.


T-TSC

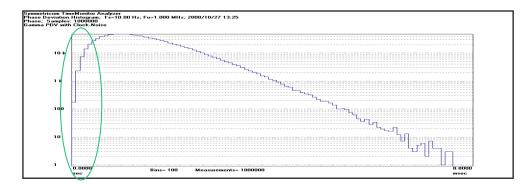
PDV: a Key Aspect in Packet Timing Performance

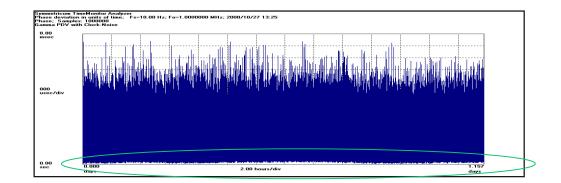

- Packet Delay Variation (PDV) is a major contributor to "clock noise"
 - Related to number of hops, congestion, line-bit-rate, queuing priority, etc. Timestamp-error can be viewed as part of PDV
- Clock recovery involves low-pass-filter action on PDV
 - Oscillator characteristics determine degree of filtering capability (i.e. tolerance to PDV)
 - Higher performance oscillators allow for longer time-constants (i.e. stronger filtering)
 - Lower performance (less expensive) oscillators may be used (may require algorithmic performance improvements)
- Performance improvements can be achieved by
 - Higher packet rate
 - Controlling PDV in network (e.g. network engineering, QoS)
 - Timing support from network (e.g. *boundary clocks* in PTP)
 - Packet selection and/or nonlinear processing

Packet delay variation (PDV)

- Queuing
- Equipment Configuration
- Priority/ QoS

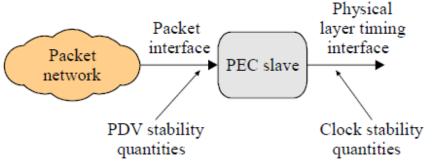
Packet delay variation (PDV), Cont.



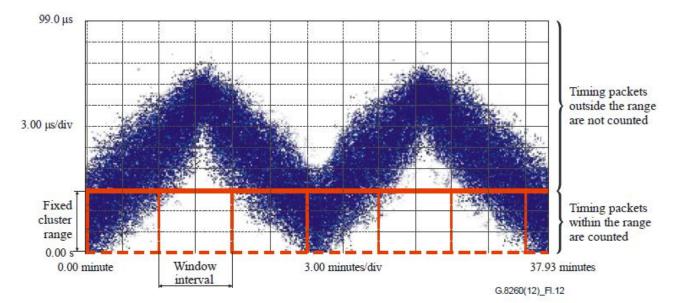

- A packet arrives in the HPQ, just when a packet from the LPQ has begun transmission
- The packet from HPQ is blocked till the LPQ packet is transmitted
- With more complex prioritization scheme the delay due to head of line blocking could vary significantly
- Tools specified by IEEE 802.1 to address this issue (e.g. frame preemption, scheduled traffic)

Ex. : at 1Gbit/s, 1000 byte packet = 8 x 1000 / 1000 x $10^6 = 8 \mu s$

Notion of "Best Packets"

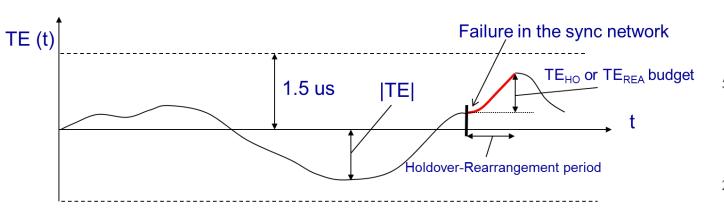

- Impact of PDV can be mitigated by means of a suitable classification and **selection** of packets
- The "minimum delay" approach is an example. Depending on the network characteristics other approaches may be more suitable
- The assumption that the path is constant over the interval of observation implies a PDV with a distribution function with a slowly changing floor (i.e. minimum delay that a packet can experience)
- In many cases it has been observed that a reasonable fraction (e.g. x%) of the total number of packets will traverse the network at or near this floor
- Using only these packets in the timing recovery mechanism would allow to significantly reduce the impact
 of the PDV on the quality of the recovered reference timing signal

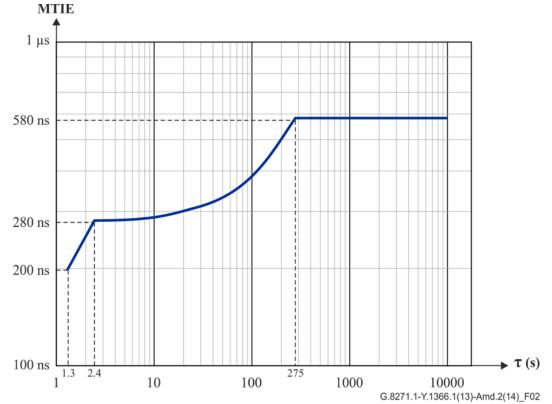
Sync Metrics in Packet Networks


- The Network Element clock output metrics as per TDM networks (e.g. MTIE/MRTIE/TDEV)
 - Some distinctions are required in case of packet clock integrated in the Base Station (no standardized output MTIE/TDEV by 3GPP)
- Specific Metrics have been defined to better characterize the behavior of packet networks (PDV) delivering the timing reference
 - Metrics that associate PDV with Frequency Offset or phase variation
 - Tolerance masks/Network limits are used by network operators and clock manufacturers
 - Packet selection methods can be justified

[Clock stability quantities estimation] = function (PDV stability quantities) G.8260(10)_F1.1

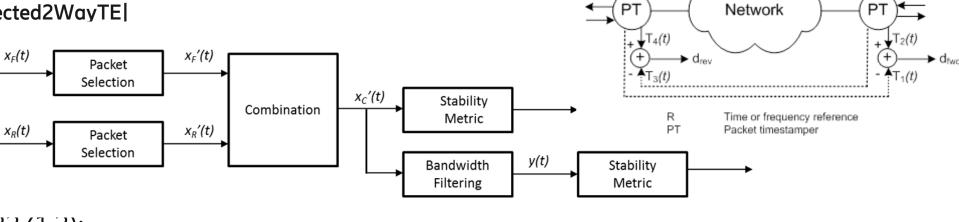
Floor Packet Percentage


Family of metrics based on counting amount of packets, observed for any window interval of t seconds within a fixed cluster range starting at the observed floor delay and having a size δ


- Floor Packet Percent (FPP) defined in terms of percentage of packets meeting these criteria
- > Basis for the G.8261.1 network limits (150 / 75 us)

Time Sync performance metric: Full Timing Support

- Max abs(TE) for combined **dynamic** and **constant time error**
- MTIE (low frequency) and «peak-to-peak TE amplitude» (high frequency) for dynamic time error



 $TE_{\rm HO}$ applicable to the network (End Application continues to be locked to the external reference) $TE_{\rm REA}$ applicable to the End Application (End Application handles short rearrangement periods)

Time Sync performance metric: Partial Timing Support

- Metric : «Packet selected 2WayTE»
 - APTS, Assisted Partial Timing Support: **Peak-to-peak pktSelected2WayTE**
 - PTS: max |pktSelected2WayTE|

+/-100ns

T-GM

PRTC,

PRC

— Network Limit (G.82/1.2):

- 1.35µs in terms of maximum absolute time error (at the output of the clock); if GNSS is lost.
- 1.1 µs at the input of the T-TSC
- 2 classes of network limits addressing different end applications cases, distinguished by different Packet Selection criteria
 - High Stability Clocks: window interval of 200s percentage of 0.25%
 - Low stability clocks, under study

Note: G.8273.4 under development (clock for PTS and APTS)

Packet

Network

R

+/-1100ns

T-BC-P

Packet

Network

PRTC/

GNSS

T-TSC-A

GNSS-assisted

n

+/-1350ns

Master

R

Probe

+/-1500ns

End Application

Distributed Arch (e.g. CPRI)

- Packet Timing in ITU-T: ITU-T G.826x series, G.827x series,
- ITU-T general definitions: G.810, G.8260
- NTP: IETF RFC 5905/6/7/8
- PTP: IEEE 1588-2008
- CES: RFC 5087, RFC 5086, RFC4533, ITU-T Y.1413, ITU-T Y.1453, MEF3, MEF 8

Ericsson.com