

Atomic Clocks as Primary Frequency Sources

WSTS 2023

Online Tutorial Session

Marc A. Weiss, Ph.D.

Marc Weiss Consulting LLC

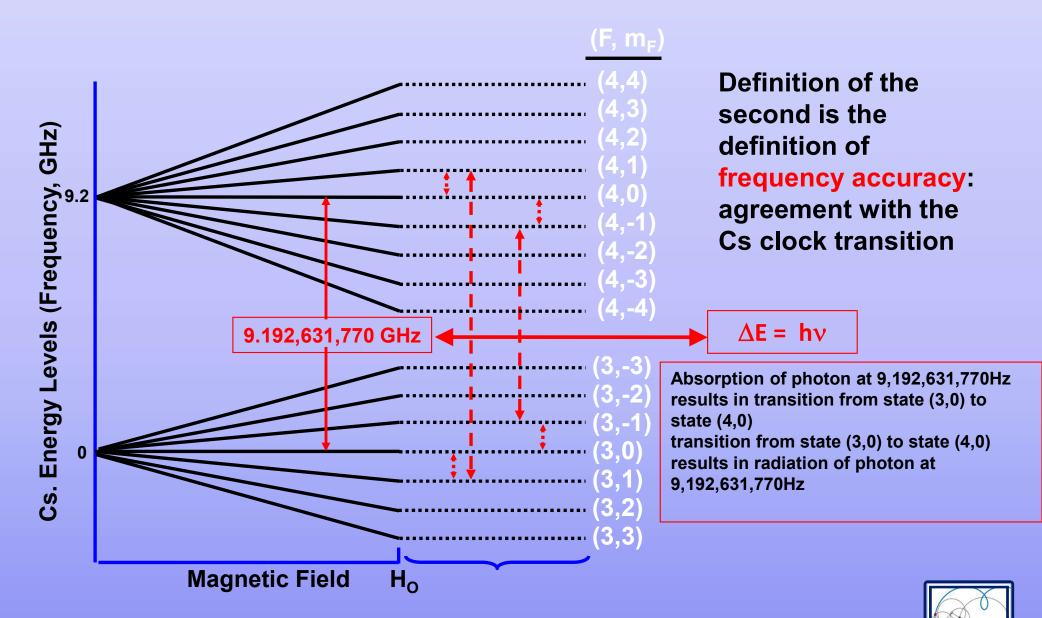
marcweissconsulting@gmail.com

Three Things to Understand Atomic Clocks

1. Atoms are in discrete energy levels

- a. The change in energy are quanta
- b. Magnetic fields break the levels into the hyperfine structure

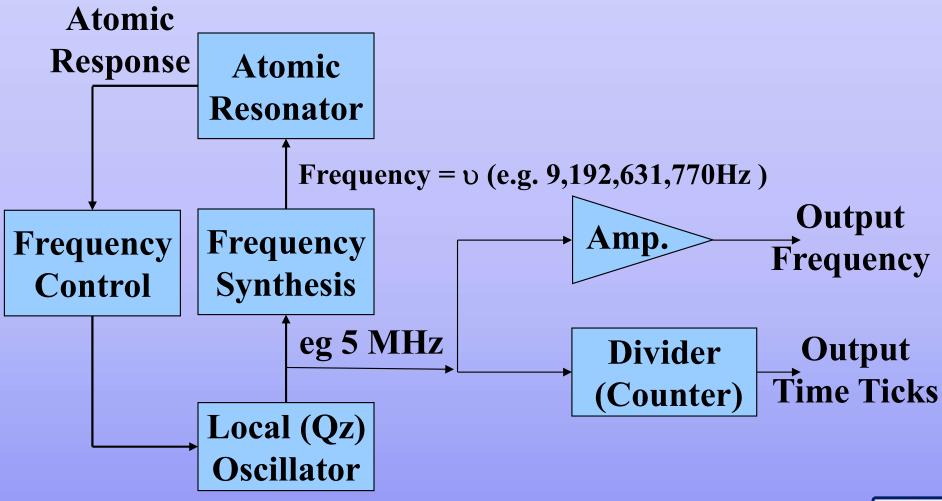
2. Energy is proportional to frequency


- a. Einstein discovered the relation: $\Delta E = hv$
- b. A change in energy levels, ΔE , is proportional to the frequency v

3. A clock is a frequency device

- a. A system whose states repeat, e.g. the day
- b. Time is a count of states of frequency, e.g. the calendar

Atomic Frequency Standards: Produce Frequency Locked to an Atomic Transition

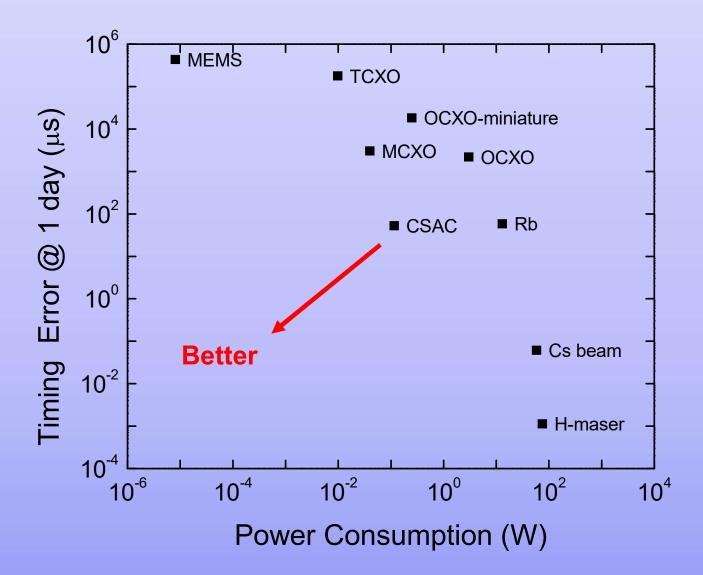


Basic Passive Atomic Clock

- 1. Obtain atoms to measure
- 2. Depopulate one hyperfine level
- 3. Radiate the state-selected sample with frequency v
- 4. Measure how many atoms change state
- 5. Continuously correct ν to maximize measured atoms in changed state

Block Diagram of Atomic Clock Passive Standard

Types of Commercial Atomic Clocks


- Cesium thermal beam standard
 - Best long-term frequency stability
- Rubidium cell standard
 - Small size, low cost
- Hydrogen maser
 - Best stability at 1 to 10 days (short-term stability)
 - Expensive several \$100K
- Chip Scale Atomic Clock (CSAC)
 - Very small size, low power
 - Cs CSAC not to be confused with Cs beam tube
- Note that new clocks are under development!
 - E.g., using atoms cooled to micro-Kelvin
 - Using transitions whose frequency is optical
 - Come to WSTS 2023 for details

Chip Scale Atomic Clock (CSAC)

- Cs or Rb miniature cell standard not a Cs beam tube, nor a Rb cell!
- Uses a different way of interrogating atoms: Coherent Population Trapping (CPT)
- Very small size and weight and low power consumption
- Better performance than a quartz oscillator

Oscillator Comparison

Technology	Intrinsic Accuracy	Stability (1s)	Stability (floor)	Aging (/day) initial to ultimate	Applications
Inexpensive Quartz, TCXO	10 ⁻⁶	~10 ⁻¹¹	~10 ⁻¹¹	10 ⁻⁷ to 10 ⁻⁸	Wristwatch, computer, cell phone, household clock/appliance,
Hi-quality Quartz, OCXO	10 ⁻⁸	~10 ⁻¹²	~10 ⁻¹²	10 ⁻⁹ to 10 ⁻¹¹	Network sync, test equipment, radar, comms, nav,
CSAC	~10 ⁻⁹	< 10 ⁻¹⁰	< 10 ⁻¹¹	< 10 ⁻¹²	Drones, satellites, underwater, network sync,
Rb Oscillator	~10 ⁻⁹	~10 ⁻¹¹	~10 ⁻¹³	10 ⁻¹¹ to 10 ⁻¹³	Wireless comms infrastructure, lab equipment, GPS,
Cesium Beam	~10 ⁻¹³	~10 ⁻¹¹	~10 ⁻¹⁴	nil	Timekeeping, Navigation, GPS, Science, Wireline comms infrastructure,
Hydrogen Maser	~10 ⁻¹¹	~10 ⁻¹³	~10 ⁻¹⁵	10 ⁻¹⁵ to 10 ⁻¹⁶	Timekeeping, Radio astronomy, Science,

Oscillator Comparison (continued)

Technology	Size	Weight	Power	World Market	Cost
Inexpensive Quartz, TCXO	≈ 1 cm³	≈ 10 g	≈ 0.010 W	≈ 10 ⁹ s/year	≈ \$30-50
Hi-quality Quartz, OCXO	≈ 50 cm³	≈ 500 g	≈ 10 W	≈ 10Ks/year	≈ \$100s
CSAC	≈ 17 cm ³	≈ 35 g	≈ 0.12 W	?	≈ \$1000s
Rb Oscillator	≈ 200 cm³	≈ 500 g	≈ 10 W	≈ 10Ks/year	≈ \$1000s
Cesium Beam	≈ 30,000 cm ³	≈ 20 kg	≈ 50 W	≈ 100s/year	≈ \$10Ks
Hydrogen Maser	≈ 1 m³	≈ 200 kg	≈ 100 W	≈ 10s/year	≈ \$100Ks

Holding a Microsecond after Loss of Sync

	Temperature Compensated Crystal Oscillator (TCXO)	Oven Controlled Crystal Oscillator (OCXO)	Chip Scale Atomic Clock (CSAC)	Rb Oscillator	Cs Beam-Tube Oscillator
Range of times to hold a microsecond	10 minutes – 1 hour	1 – 24 hours	3-15 hours	8 hours – 3 days	10-300 days
Cost Range	\$5-20	\$50-500	\$1.5K-3K	\$500-1500	\$20K - \$50K



Conclusions: Atomic Standards

- Classic (over decades) commercial atomic clocks are Cs. beam tubes, Rb. Cells, and H-masers, with more recently CSACs
- These atomic frequency standards share a common theme: the stabilization of an electronic (quartz) oscillator with respect to an atomic resonance.
- Although the use of atoms brings with it new quantum mechanical problems, the resulting long-term stability is unmatched by traditional classical oscillators.
- Revolutionary new atomic frequency standards are in development as commercial devices

Thanks for your attention!

