Clock Metrics WSTS-2023 Tutorial Session Kishan Shenoi kishan.shenoi@intel.com

Intel Corp.

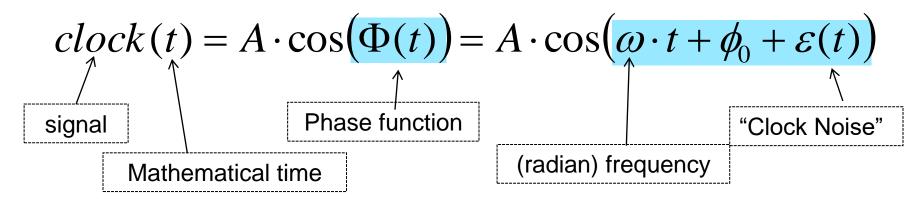
2200 Mission College Blvd.

Santa Clara, CA 95054

Synchronization Metrics (Performance)

- Mathematical Model
- Fundamental Clock Concepts and Metrics
 - Time Error (TE) and Time Interval Error (TIE)
 - MTIE
 - TDEV
- Relationship between TDEV, Spectrum, and MTIE
 - Use of TDEV to identify noise type
 - Using TDEV for guidance on loop bandwidths

Common Mathematical Models



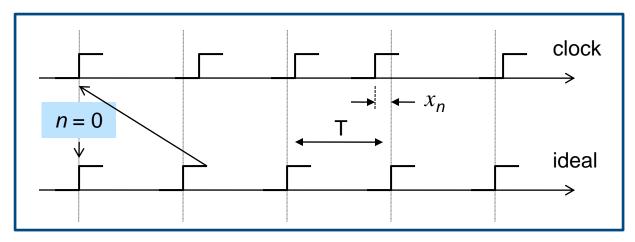
- A: Amplitude of signal. Does not figure in timing metrics.
- ϕ_0 : Initial phase. Depends on choice of time origin. Usually assumed to be 0.
- $\varepsilon(t)$: Can be further decomposed into different categories such as frequency error, frequency drift, and random noise components
- ideal periodic signal: $\Phi(t)$ is a linear function of $t(\varepsilon(t) \equiv 0)$

$$x(t) = a_0 + y \cdot t + \left(\frac{1}{2}\right) \cdot D \cdot t^2 + \phi(t)$$

$$x(nT_s) = a_0 + y \cdot nT_s + \left(\frac{1}{2}\right) \cdot D \cdot \left(nT_s\right)^2 + \phi(nT_s)$$

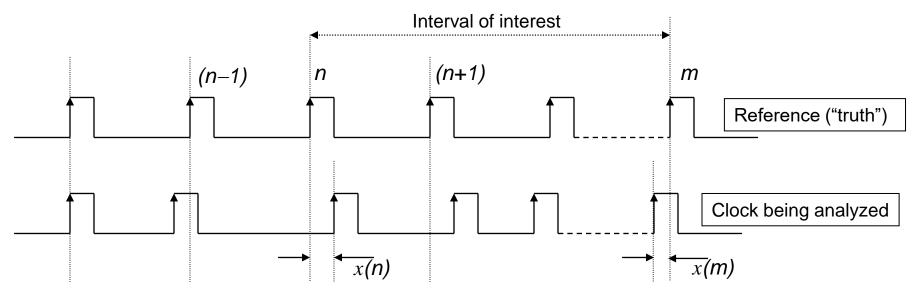
Time Error Models

Clock Metrics – Basics: Time Error



- Clock signals are (<u>almost</u>) periodic (<u>nominal</u> period ~ T)
- Time Error (Phase Error):
 - Edges do not line up phase error (expressed in time units)
- Time Error Sequence : $\{x_n\}$ or $\{x(n)\}$
 - All clock metrics derived from time error sequence
 - Note: the time error varies "slowly" so we can divide down to a convenient rate (However: careful when dividing down – aliasing)
 - o Common assumption: $x_0 = 0$.

Time Interval Error



- Consider an interval of interest (e.g. 100m dash)
- Duration measured by ideal clock ("truth") : $(m n) \cdot T_S$
- *Error* in measurement of same interval by clock being analyzed:

$$TIE(m, n) = x(m) - x(n)$$

Clock Metrics – MTIE and TDEV

A measure of peak-to-peak excursion expected within a given interval, τ (τ is a parameter). The observation interval is scanned with a moving window of duration τ and MTIE(τ) is the maximum excursion.

Given a set of N observations $\{x(k); k=0,1,2,...,(N-1)\}$, with underlying sampling interval τ_0 , let $\tau = n \cdot \tau_0$ ("window" = n samples; n = 1,2,...,N).

Peak-to-peak excursion over n samples starting with sample index i is the worst-case TIE in this interval of n samples:

$$peak-to-peak(i) = \{ \max_{k=i}^{k=i+n-1} x(k) - \min_{k=i}^{k=i+n-1} x(k) \}$$

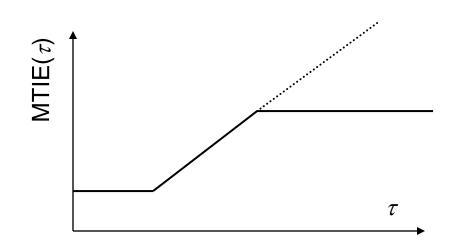
 $\mathsf{MTIE}(n)$, or $\mathsf{MTIE}(\tau)$, is the largest value of this peak-to-peak excursion:

$$MTIE(n) = \max_{i=0}^{N-n} \left\{ \max_{k=i}^{k=i+n-1} x(k) - \min_{k=i}^{k=i+n-1} x(k) \right\}$$

Clock Metrics – MTIE and TDEV

MTIE is a useful indicator of the size of buffers and for predicting buffer overflows and underflows.

Buffer size > MTIE(τ) implies that overflow/underflow unlikely in any interval < τ Buffer size = MTIE(τ) implies that overflow/underflow occurs approx. every τ seconds



Observations regarding MTIE:

- ullet monotonically increasing with au
- linear increase indicates freq. offset
- for small τ , MTIE(τ) \leftrightarrow jitter
- for medium τ , MTIE(τ) \leftrightarrow wander
- for large τ , indicates whether "locked" (zero-slope)

Clock Metrics - MTIE and TDEV

A measure of stability expected over a given observation interval, τ (τ is a parameter).

Given a set of N observations $\{x(k); k=0,1,2,...,(N-1)\}$ with underlying sampling interval τ_0 , let $\tau = n \cdot \tau_0$ ("window" = n samples; n = 1,2,...,N).

Note: $x(k) \Leftrightarrow x_k$

$$\sigma_{x}(\tau) = TDEV(\tau) = \sqrt{\frac{1}{6n^{2}(N-3n+1)} \sum_{j=0}^{N-3n} \left[\sum_{i=j}^{n+j-1} (x_{i+2n} - 2x_{i+n} + x_{i}) \right]^{2}}$$
for $n=1,2,... \left\lfloor \frac{N}{3} \right\rfloor$

Conventional Definition

Second-order difference

N-point averaging

Sum of squares

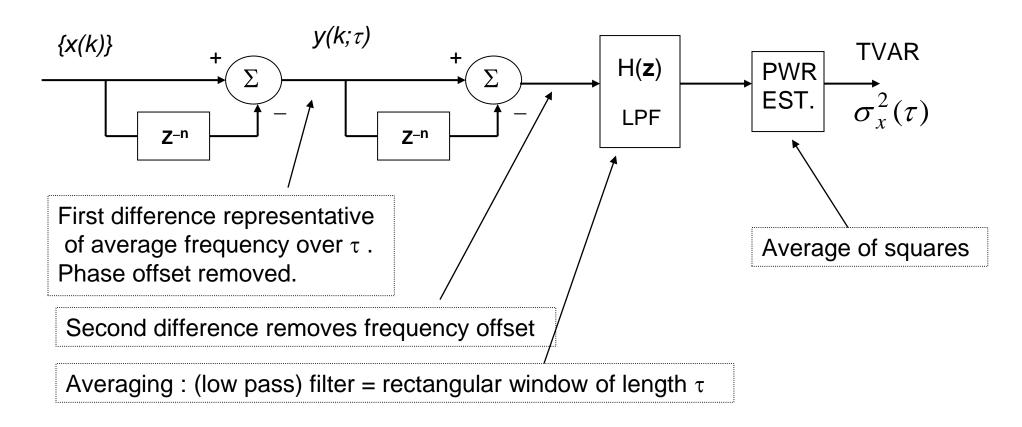
- TVAR = square of TDEV
- Modified Allan Deviation (MDEV)

$$\sigma_{y}(\tau) = \frac{\sqrt{3}}{\tau}\sigma_{x}(\tau)$$

- TDEV suppresses initial phase and frequency offset and quantifies the strength of the frequency drift and noise components {i.e., $\varepsilon(t)$ }
- TDEV provides guidance on the noise process type

Clock Metrics – MTIE and TDEV

Signal Processing Interpretation of TDEV and TVAR



Noise Types, TDEV, Spectrum & MTIE

TDEV (and MDEV) for different noise types

Noise Process	Dependence of TDEV(τ) on τ	Dependence of MDEV(τ) on τ
White PM	$ au^{-(1/2)}$	$\tau^{-(3/2)}$
Flicker PM	$ au^0$	$ au^{-1}$
Random Walk PM = White FM	τ ^{+(1/2)}	τ-(1/2)
Flicker FM	τ+1	$ au^0$
Random Walk FM	τ+(3/2)	τ ^{+(1/2)}

Spectrum (S(f)) for different noise types

Noise Process	Spectrum Type (power)
White PM	\int_{0}^{0}
Flicker PM	f^{-1}
Random Walk PM = White FM	f^{-2}
Flicker FM	f^{-3}
Random Walk FM	f^{-4}

When linear frequency drift dominates, TDEV(τ) behaves as τ^2

<u>Approximate</u> relationship between TDEV and power spectrum: (For guidance purposes only)

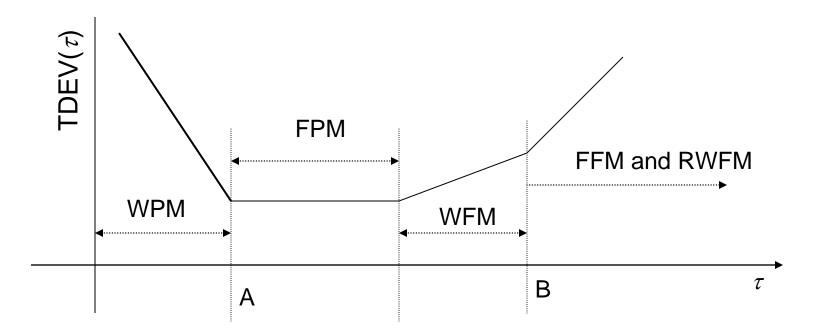
$$S_{x}(f) \approx \left(\frac{0.75}{f}\right) \cdot \left(\sigma_{x}\left(\frac{0.3}{f}\right)\right)^{2}$$

$$\sigma_{x}(\tau) \approx \sqrt{\left(\frac{1}{2.5 \cdot \tau}\right) \cdot S_{x}\left(\frac{0.3}{\tau}\right)}$$

Approximate relationship between TDEV and MTIE: $K_1 \sim 0.75$; $K_2 \sim 0.3$ (excludes effect of transients)

$$M_x(\tau) \le 7 \cdot \sqrt{4 \cdot K_1 \cdot \int_0^{f_0} \frac{1}{f} \cdot TVAR\left(\frac{K_2 \cdot f_0}{f}\right) \cdot \sin^2(n\pi f \tau_0) \cdot df}$$

Implication of TDEV(τ) versus τ



"Phase coherence" for up to A sec.

⇒ Keep PLL time constants less than A sec.

Phase Flicker Floor

"Frequency coherence" for up to B sec.

 \Rightarrow Keep FLL time constants less than B sec.

Frequency Flicker Floor

Synchronization Metrics (Performance)

Topics Covered

- Mathematical Model
- Fundamental Clock Concepts and Metrics
 - Time Error (TE) and Time Interval Error (TIE)
 - MTIE
 - o TDEV
- Relationship between TDEV, Spectrum, and MTIE
 - Use of TDEV to identify noise type
 - Using TDEV for guidance on loop bandwidths

Thank You

Questions, comments, suggestions? kishan.shenoi@intel.com

