VIRTUAL TUTORIAL O-RAN FUNDAMENTALS SYNCHRONIZATION OVERVIEW

FEBRUARY 2023 GREG ARMSTRONG PRINCIPAL SYSTEM ARCHITECT TIMING BUSINESS UNIT RENESAS ELECTRONICS CORPORATION WORKSHOP

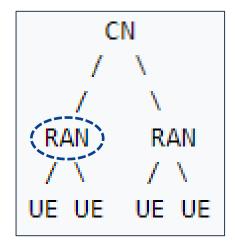
SYNCHRONIZATION AND TIMING SYSTEMS

MARCH 13-16 | VANCOUVER, BC

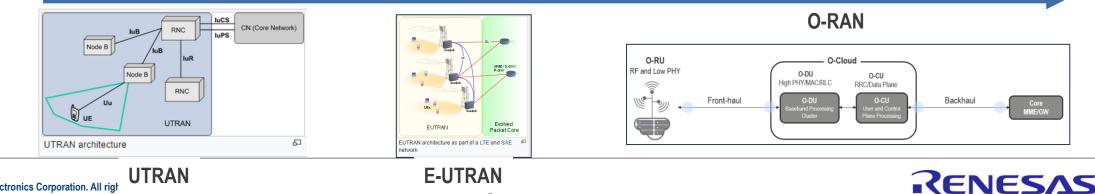
OUTLINE

- What is O-RAN?
- O-RAN Overview
 - Functional Splits
 - Deployment
- Time Accuracy in eCPRI
 - Overview
 - O-RAN Synchronization Plane

WHAT IS O-RAN



First, What Is RAN ?


- RAN = Radio Access Network
 - It implements the radio access technology.
 - Resides between the User Equipment (UE) and the Core Network (CN)

RAN history

- GRAN GSM Radio Access Network → 2G
 - TDMA, CDMA
- UTRAN = UMTS Radio Access Network \rightarrow 3G
 - W-CDMA radio access technology
- E-UTRAN = Evolved UMTS Radio Access Network \rightarrow 4G
 - MIMO, OFDM, Long Term Evolution (LTE) \rightarrow 4G LTE
- O-RAN = Open Radio Access Network \rightarrow 5G
 - MIMO, mmWave, ESA (Beam Forming)
 - Governed by IMT-2020 3GPP (3rd Generation Partnership)

4G VERSUS 5G ARCHITECTURE

Evolved Packet Core (EPC) in 4G

Transport network implements
 Telecom Boundary clocks type A/B

BBU in 4G :

- BBU recovers sync from the network
- BBU implements IEEE 1588 and SyncE
- BBU implements Telecom Slave clock (T-TSC)

RRU in 4G :

- RRU recovers sync from CPRI signal alone
- Jitter performance is a key parameter for timing devices used in RRU

Core Network (CN) in 5G

 Transport network implements Telecom Boundary clocks type C/D

BBU in 5G :

- BBU is split in 2 nodes (CU and DU)
 - CU (optionally) and DU both implement IEEE 1588 and SyncE
 - CU (optionally) and DU both implement Telecom Boundary clock (T-BC)
 - DU needs to implement clock classes C or D depending on the Operator

RRU in 5G :

- RRU cannot recover sync from eCPRI signal alone
 - RU needs to implement IEEE 1588 and SyncE (IEEE 802.1CM TSN)
- Jitter performance is a key parameter for timing devices used in RRU

What is O-RAN ?

O-RAN (Open Radio Access Network)

- Operator Led Alliance
- Initially formed in 2018
 [ORAN Forum + CRAN (China Mobile initiative)]
- Use Standard Interfaces, Standard off-the-shelf Components, Standard functional splits, etc.
 - Maximize common-off-the-shelf Hardware, Merchant Silicon
 - Minimize Proprietary Hardware
 - Use of GPP's + SW ...
- Standardized Open Software and API
 - Specified API and Interface
 - Adoption through Standardization
 - Explore Open source where appropriate

Driven for "open"ness

- The interfaces are standardized
- Operators can mix/match different component vendors for the CUs, DUs, or RUs.
- The components are interoperable, protocols are clearly defined

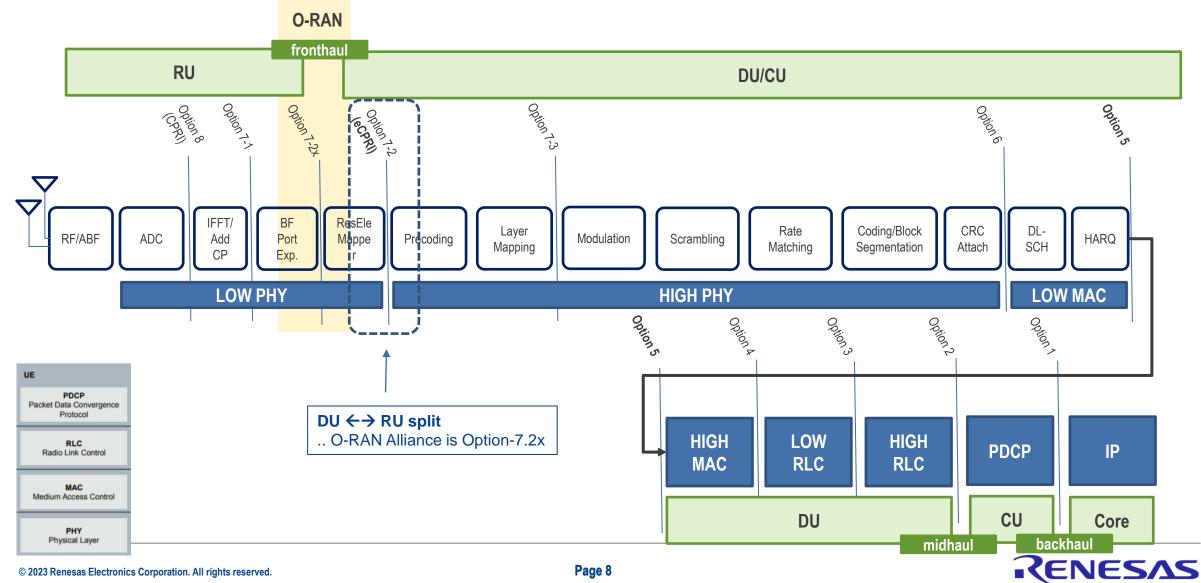
OPERAN NEWS / RESOURCES / SPECIFICATIONS / SOFTWARE / VIRTUAL EXHIBITION / MEMB	a traditional de la companya de la c
TRANSFORMING RADIO ACCESS NETWORKS TOWARDS OPEN, INTELLIGENT, VIRTUALISED AND FULLY INTEROPERABLE RAN	Welcome at O-RAN Virtual Exhibition
O-RAN ALLIANCE Overview	VISIT O RAN VIRTUAL EXHIBITION TO SEE DEMONSTRATIONS OF REAL O RAN BASED TECHNOLOGY BRINGING OPEN AND INTELLIGENT SOLUTIONS TO THE RAN.
O-RAN ALLIANCE members and contributors have committed to evolving radio access networks around the workf. Future RANs will be built on a foundation of virtualized network elements, white-box hardware and standardized interfaces that fully embrace O-RAN's core principles of intelligence and openness. An ecosystem of innovative new products is already emerging that will form the underprinnings of the multi-vender, interpretable, autonomous RAN, envisionated by many in the past, but only now enabled by the global industry-wide vision, commitment and leadership of O-RAN ALLIANCE members and contributors.	
The O-RAN ALLIANCE was founded by operators to clearly define requirements and help build a supply chain eco-system to realize its objectives. To accomplish these objectives, the O-RAN ALLIANCE's work will embody two core principles:	

ORAN Alliance following 3GPP and IMT-2020 for Open Network Architecture

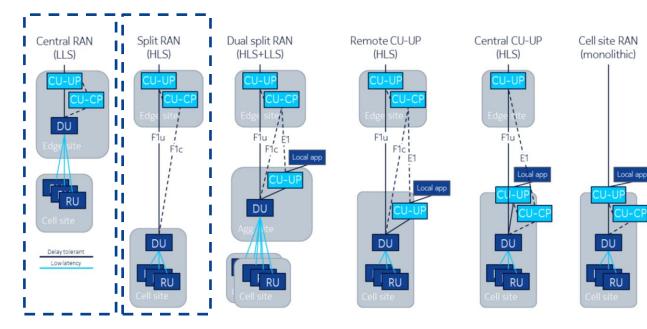
INTELLIGENCE

OPENNESS

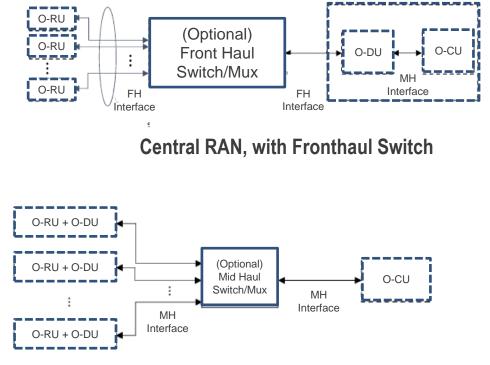
"Mission is to re-shape the RAN industry towards more intelligent, open, virtualized and fully interoperable mobile networks."



O-RAN OVERVIEW

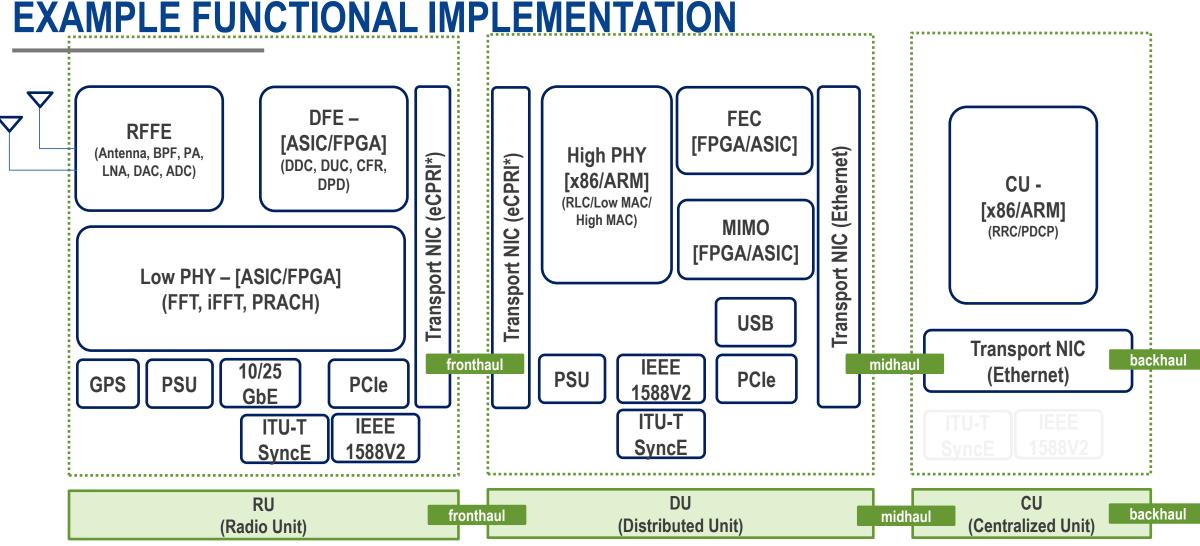

ARCHITECTURE & FUNCTIONAL SPLITS

FUNCTIONAL SPLITS – O-RAN SPECIFIC



VARIOUS DEPLOYMENT EXAMPLES*

Scenario B – Initial Priority Focus


The CU server/software co-located with the DU ... or hosted in a regional cloud data center.

Split RAN, with Midhaul Switch

RENESAS

*Closer to Traditional 5G - Source: NGMN-2018

Source: Example based on TIP OpenRAN 5G NR BS Platform Requirements

* eCPRI/RoE as well as CPRI support will be needed for coexistence/transition

RENESAS

TIME ACCURACY IN ECPRI

SPECIFICATIONS

5G DRIVES TIGHTER SYNCHRONIZATION REQUIREMENTS

The 3GPP time alignment error (TAE) (or relative time error (TE_R), as used in ITU-T terminology) represents the largest timing difference measured between any two elements of the cluster

- Both 4G and 5G targets are 3 μs (±1.5 μs to common reference, or PRTC)
- TAE down to 130 ns between clusters of RUs (i.e. ±65 ns from same DU)

O-RAN CUS–plane spec also defines two classes of O-DU:

- Class A has ±15 ppb frequency error limit
- Class B has ±5 ppb limit

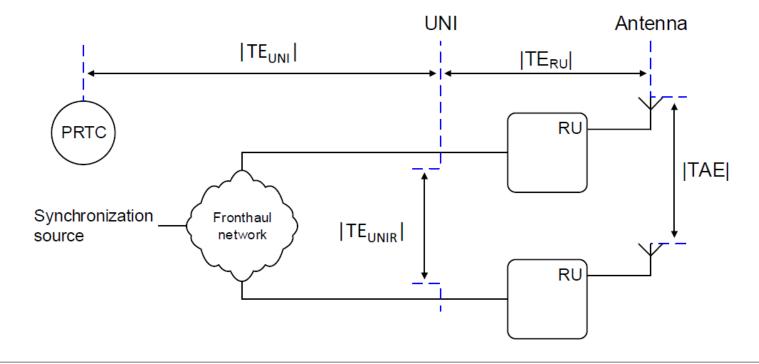
Class level of accuracy	Maximum relative time error requirements (Note 1)	Typical applications (for information)
3A	5 µs	LTE MBSFN.
4A	3 μs	NR intra-band non-contiguous (FR1 only) and inter-band carrier aggregation; with or without MIMO or TX diversity.
6A	260 ns	LTE intra-band non-contiguous carrier aggregation with or without MIMO or TX diversity, and inter- band carrier aggregation with or without MIMO or TX diversity.
		NR intra-band contiguous (FR1 only) and Intra- band non-contiguous (FR2 only) carrier aggregation, with or without MIMO or TX diversity.
6B	130 ns	LTE intra-band contiguous carrier aggregation, with or without MIMO or TX diversity.
		NR (FR2) intra-band contiguous carrier aggregation, with or without MIMO or TX diversity.
6C (Note 2)	65 ns	LTE and NR MIMO or TX diversity transmissions, at each carrier frequency.

NOTE 1 – The maximum relative time error requirements represent the largest timing difference measured between any two elements of the cluster. See Appendix VII of [b-ITU-T G.8271.1] for illustration of how requirements are specified in a cluster. In 3GPP terminology this is equivalent to time alignment error (TAE).

NOTE 2 – Level 6C is an internal equipment specification, and does not result in a synchronization requirement on the transport network.

ITU-T G.8271 Table 2 - Time and phase requirements for cluster based synchronisation

RENESAS

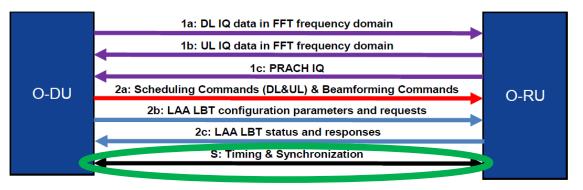

Time Error Budgets

• The eCPRI specification sets time error (TE) budgets for the usr network interface (UNIT)

- Allow for the time alignment error (TAE) requirements for four (4) categories of 3GPP features and RANs are met
- Will focus on eCPRI timing accuracy categories A, B and C, and time synchronization deployment Cases 1.1 and 1.2
 - because these are most relevant to Open RAN applications

Reference Points and Definitions for eCPRI Fronthaul Networks

- The synchronization source could be a PRTC+T-GM, or DU that is directly or remotely synchronized by a PRTC.



O-RAN OVERVIEW

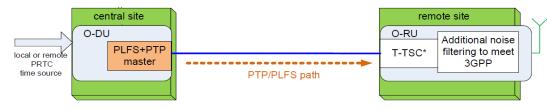
SYNCHRONIZATION PLANE

O-RAN S-PLANE

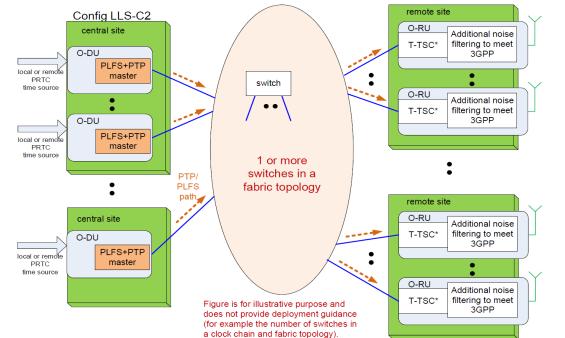
Source: O-RAN.WG4.CUS

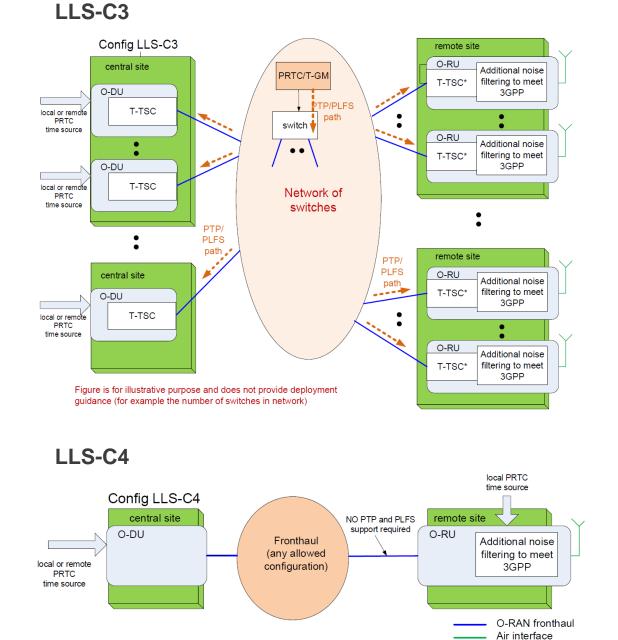
- Timing and Synchronization Plane
 - Using SyncE SSM & IEEE 1588 PTP packets
 - Relative time error between the O-DU and O-RU should be within a limit of 3µs (±1.5 µsec)
- Current Version on O-RAN specification assumes transport of PTP directly over L2 Ethernet (ITU-T G.8275.1 full timing on-path support)
 - transport of PTP over UDP/IP (ITU-T G.8275.2 partial timing support from the network) is also possible

Four (4) O-RAN synchronization topologies:


- Configuration LLS-C1: the O-DU is part of the synchronization chain towards the O-RU. Network timing is distributed from O-DU to O-RU via direct connection between O-DU site and O-RU site.
- **Configuration LLS-C2**: the O-DU is part of the synchronization chain towards the O-RU. Network timing is distributed from O-DU to O-RU between O-DU sites and O-RU sites. One or more Ethernet switches are allowed in the fronthaul network.
- Configuration LLS-C3: the O-DU is not part of the synchronization chain towards the O-RU. Network timing is distributed from PRTC/T-GM to O-RU typically between central sites (or aggregation sites) and O-RU sites. One or more Ethernet switches are allowed in the fronthaul network.
- **Configuration LLS-C4**: the synchronization reference is provided to the O-RU with no involvement of the transport network (typically with a local GNSS receiver).

How O-DU is synchronized is not in the scope of this classification of the synchronization topologies – but it cannot be ignored!!!




TOPOLOGIES

LLS-C1

LLS-C2

Source of figures: O-RAN.WG4.CUS

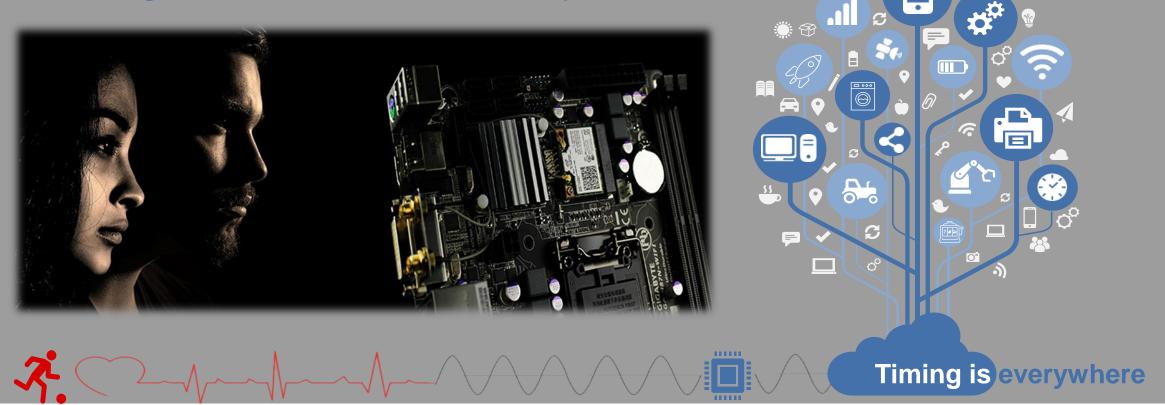
© 2023 Renesas Electronics Corporation. All rights reserved.

RENESAS

O-RAN SYNCHRONIZATION FOR O-DU

Configuration	Source	PLFS Master Toward Fronthaul	PTP Master Toward Fronthaul	Notes
LLS-C1	Local/Remote PRTC or PTP from Backhaul	Yes	Yes	Point to point path
LLS-C2	Local/Remote PRTC or PTP from Backhaul	Yes	Yes	Via 1 or more switches from O-DU to O-RU
LLS-C3	PTP/SyncE from Fronthaul	No	No	Via 1 or more switches from T-GM in network Uses ITU PTS (with SyncE) use case
LLS-C4	Local/Remote PRTC	No	No	No timing output from O-DU.

ORAN Terminology: O-DU – open Distribution Unit, O-RU – open Radio Unit Fronthaul – The network between the O-DU and O-RU Backhaul – The network connecting the O-DU to the core network PLFS (Physical Layer Frequency Signals) – same as ITU-T SyncE Defined in **O-RAN.WG4.CUS.0-v06.00** with performance requirements in Table 9-3, 9-4 and 9-5


O-RAN SYNCHRONIZATION FOR O-RU

Configuration	PLFS Input?	PTP Input?	Fronthaul Network Type	Notes
LLS-C1	Yes	Yes	FTS (with SyncE)	Point to point path
LLS-C2	Yes	Yes	FTS (with SyncE) or PTS	Via 1 or more aware switches
LLS-C3	Yes	Yes	FTS (with SyncE) or PTS	Via 1 or more switches from T-GM in network
LLS-C4	No	No	N/A	No timing input from RU from network

ORAN Terminology: O-DU – open Distribution Unit, O-RU – open Radio Unit Fronthaul – The network between the O-DU and O-RU Backhaul – The network connecting the O-DU to the core network PLFS (Physical Layer Frequency Signals) – same as ITU-T SyncE Defined in **O-RAN.WG4.CUS.0-v06.00** with performance requirements in Table 9-3, 9-4 and 9-5

Renesas.com

Timing is the heartbeat of the system

