

Timing Monitoring: Following the White Rabbit

Francisco Girela @ WSTS 2021

www.sevensols.com

Time Synchronization

- **Traceable time synchronization** is the capability to maintain a shared notion of time related to an official time reference between different devices located in the same or different locations.
 - **Generation:** is the capability to obtain a notion of time.
 - GPS, atomic clocks
 - Distribution: is the capability to propagate a notion of time to a different device.
 NTP, PTP, WR, PPS

Time Synchronization

- Accuracy: The degree to which the result of the time conforms to the correct value or a standard.
- **Precision:** The degree of repeatability of different results of the time.

High Accuracy High Precision Low Accuracy High Precision High Accuracy Low Precision Low Accuracy Low Precision

White Rabbit Technology

White Rabbit technology

White Rabbit (WR) is an ultra-accurate IEEE 1588 (PTP) implementation that achieves sub-nanosecond accuracy.

Easy to integrate in **Ethernet** networks

Avoid calibration and

NTP, PTPv2, PPS and subnanosecond WR

Scalable to thousands of nodes in metro areas

Resilient to GNSS disruption

PTPv2.1 High accuracy profile

White Rabbit hardware

- Multi-port synchronization fan-out.
- WR, HATI, IEEE 1588 PTPv2 and NTP interoperability on all optical interfaces.
- Multi-source time references.
- Failover mechanisms.
 - Automatic switchover.
 - Holdover.

Hardware

Analog timing I/O

The failover algorithm (FOCA):

Failover

- Assign a fixed timing source priority.
- Failover only when the timing source fails.
- Reevaluate the timing sources following its predefined order.
- Lock to the first available timing source.

Problem:

Different PNT technologies coexist in timing networks.

- Higher complexity.
- Higher diversity.
- Higher accuracy requirements.
- Traceability is mandatory.
- Integrity between sources is problematic.

Monitoring tool that benefits from White Rabbit time synchronization to obtain a high accuracy timing reference which is used to precisely measure the performance of multiple and diverse PNT sources in one single device

- LLDP support.
- Reverse timing collection.
- Multi-protocol monitoring tool.
- High precision measurements.
- High frequency sampling.
- Centralized service.
- White Rabbit/PTP v2.1 High Accuracy compliant.

Timing monitoring

Interface role:

- Active timing source: Discipline the internal clock in the device
- **Passive timing source:** Back-up timing source/monitored timing source.
- Survey timing source: Monitored timing source.

Statistics:

- Offset
- One-way delay
- Round trip time
- Standard deviation
- Max-min offset
- Temperature

White Rabbit best practices

Local area scenario: provide PNT resiliency based on local and network redundancy based on failover mechanisms.

• Failover

Automatic switching between different time references based on BMCA protocol implementation.

Advanced Holdover capabilities

After detection of all timing sources failure, the reference switches transparently to the HO clock.

Monitoring

Monitoring statistics of all passive and survey timing sources connected to the device.

LAN timing monitoring

- LAN synchronization: Primary timing source is a calibrated GNSS with <15 ns RMS jitter.
 - Monitoring timing **source** is a fiber IEEE 1588 PTPv2 with <10 ns RMS jitter.
 - Monitoring timing source is a fiber White Rabbit PTP High Accuracy with < 1 ns RMS jitter.

White Rabbit best practices

Wide area scenario: White Rabbit/PTPv2.1 High Accuracy to distribute ePRTC to different locations.

GNSS backup and failover

Automatic switching between different time references and holdover. Time synchronization of GPS-denied locations.

Local distribution

Interoperability with PTPv2 for local distribution in each site using different profiles.

• Monitoring

Loopback links to ensure the performance of the time synchronization network. It allows measurements of the asymmetry, latency and time synchronization precision.

WAN timing monitoring

- **Remote time distribution:** Primary timing **source** is a calibrated GNSS with <15 ns RMS jitter.
 - Monitoring timing source is an uncalibrated GNSS with <15 ns RMS jitter.
 - Monitoring timing **source** is a fiber IEEE 1588 PTPv2 with <10 ns RMS jitter.
 - Monitoring timing source is a fiber White Rabbit PTP High Accuracy with < 1 ns RMS jitter.

White Lynx timing monitoring

Spanish stock market use case

- Sub-nanosecond synchronization over a 44 km fiber link (27 miles).
- ± 15 nanoseconds traceability to UTC using the DOWR.
- Holdover capabilities if the link is lost.

Contact 7 Solutions

- Check our webpage: https://sevensols.com/
- Contact us:
 - EMEA/APAC: <u>info@sevensols.com</u>
 - USA: <u>info.usa@sevensols.com</u>
- Follow our social networks:
 - LinkedIn: https://www.linkedin.com/company/seven-solutions/
 - Twitter: https://twitter.com/sevensols
- Meet the speaker:
 - E-mail: francisco.girela@sevensols.com
 - Available during the whole show!

Thank you for your attention!

