

Timing in Broadcast, Finance and Power

WSTS 2021 Doug Arnold

- 1. The need for packet timing in industry
- 2. Broadcast
- 3. Finance
- 4. Power
- 5. Industrial Automation
- 6. Automotive

Bonus Industries!

Every technical industry

- Timing is always needed in distributed control systems and/or communication systems
- History
 - Industry specific network technology
 - Industry specific timing signals, usually in dedicated timing networks
- Present and future
 - Datacom based networks
 - Ethernet, Wifi, IP
 - NTP and PTP for timing
 - Driven by cost

Need for timing in Broadcast

- Audio and video captured separately
 - Audio and visual captured separately
- Broadcast audio visual presentation built from files on multiple servers
 - One or more audio streams (15 μ s requirement)
 - One or more video streams
- Need ~ 1 μ s from packet timing

Redundant Broadcast networks

PTP Profiles for Broadcast

SMPTE ST2059-2 Profile

- Society of Motion Picture and Television Engineers
- Mapping: IPv4 or IPv6
- Multicast
- Delay request-response
- Master ports send signalling message with timing meta data needed by legacy timing infrastructure
- AES67 Media Profiles for PTP timing
 - Audio Engineering Society
 - Similar to SMPTE ST2059-2
 - Does not have timing metadata message

One of the SPMTE Defined test patterns

- Enterprise IT technical viewpoint
 - IETF is where standards come from
 - Comfortable with non-standard approaches (Especially HFT firms)
- Regulatory compliance is mission critical
- Need time at software layer in standard hardware
 - PCIe cards
 - Software slaves/clients

Timing Requirements in Finance

- To trade in the United States (Consolidated Audit Trail)
 - Financial transactions need to be timestamped to 50 ms by traders
 - 100 µs by exchanges
 - To UTC:NIST
- To trade in the Europe (MiFID II)
 - Financial transactions need to be timestamped to 100 µs
 - To UTC
 - Most trading firms do business all over the world, so they will need to meet the strictest time accuracy for
- HFT
 - 50 ns 500 ns
 - To measure network performance, not for regulation

MiFID II

- Timestamp accuracy (100 μs)
 - Allows government regulators to identify illegal trading activity
 - Standard NTP software can barely meet this with a local timeserver
 - PTP or Specialized NTP preferred
- Archive data
 - Need to prove compliance on past dates
 - Government audits
- Measurements
 - Desire to prove timing accuracy of slaves/clients

Timing Protocols in Finance

- Default Profile PTP
- Enterprise Profile PTP
 - Draft RFC in IETF
 - Mixed multicast/unicast operation (hybrid mode)
- Specialized NTP
 - High message rates
 - Lucky packet filters
 - Hardware timestamping

Challenges of Today's Power Grids

- Clean energy sources: power generation varies with weather
 - solar
 - wind
- Grid operators often required to buy excess energy from customers with clean energy production
 - These sites sometimes generate energy, sometimes need energy
- Demand response
 - Balance energy flows
 - Turn generators on and off
 - Turn large loads on and off, e.g. air conditioning

Function	Purpose of timing	Accuracy required
Control Room	Log file coordination	1 second
SCADA system	Grid wide monitoring and control	1 ms
Synchrophasors	Measurements more precise than SCADA system. Monitor grid stability. Predict faults	1 μs
Travelling wave fault detection	Location of faults to within 100s of meters Improves maintenance efficiency	300 -1000 ns

The use of precise timing in power system networks reduces blackouts and allows the grid to be more efficiently monitored and controlled. Timing used in:

- Intelligent Electronic Devices (IEDs)
- Synchrophasors, also called Phase Measurement Units (PMUs)
- Merging units
- Protective Relays

Travelling Wave Fault Detection

- 300 ns precision ~
 100 m location error
- Repair crews can spend less time finding the damaged equipment

Power Industry Standards

- IEC 61850-9-3, Utility Profile
 - Layer 2
 - peer delay
 - Defines mappings for HSR and PRP (redundant layer 2 networks)
- IEEE C37.238, Power profile
 - Utility profile ++
 - Inaccuracy TLV, so PTP slaves can know received time accuracy
 - Requires support by BCs and TCs (optional in standard)
 - Uses reserved domain number 254
 - Achieves isolation from other PTP profiles
 - Violates IEEE 1588

Combined HSR and PRP network in a substation

Bonus Industries: Timing in Industrial Automation and Automotive

Thanks to Rodney Cummings for help with these industries

Industrial Automation

- Timing needed to coordinate cyber physical system
 - Sensors -> Controller -> Actuators
 - For example, assembly line robots
- Networks
 - Legacy CAN bus, RS45
 - Ethernet
 - Order of 1000 nodes
 - Many sensors and actuators are simple two port switches
 - Up time critical
 - Integration with 5G networks in near future

Industrial Automation timing requirements

- Timing agreement ~ 1 us
 - No need for standard time, often no GNSS
 - Redundant PTP domains
- Standards
 - Profile IEEE 802.1AS
 - Layer 2, peer delay, Non filtering BCs with cumulative rate ratio
 - IEC/IEEE P60802
 - Time sensitive network profile for Industrial Automation
 - Profile of IEEE 802.1 TSN standards

Automotive

- Timing needed to coordinate ~ 100 controllers in car
- Networks
 - Moving away from CAN bus and flexRay to Ethernet
 - Moving away from multiple networks to one network
 - Interact with 5G in future
- Timing
 - No need for standard time until 5G communications added
 - Want simplified PTP
 - No BMCA
 - Fixed port states
- Standards
 - 802.1DG PTP Profile and traffic shaping

Thank you for your attention

For more information please feel free to contact: doug.arnold@meinberg-usa.com